1 | NING H, WANG H, LIN Y, et al. A survey on metaverse: The state-of-the-art, technologies, applications, and challenges[J/OL]. arXiv: , 2021. | 2 | Introducing Meta: A social technology company[EB/OL]. [2022-05-30]. . | 3 | 北京日报. 国内首家获批元宇宙行业协会揭牌[EB/OL]. [2022-05-20]. . | 4 | 赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7. | 4 | ZHAO C. State-of-the-art and recommended developmental strategic objectives of smart agriculture[J]. Smart Agriculture, 2019, 1(1): 1-7. | 5 | 王文喜, 周芳, 万月亮, 等. 元宇宙技术综述[J]. 工程科学学报, 2022, 44(4): 744-756. | 5 | WANG W, ZHOU F, WAN Y, et al. A survey of metaverse technology[J]. Chinese Journal of Engineering, 2022, 44(4): 744-756. | 6 | 袁勇, 王飞跃. 区块链技术发展现状与展望[J]. 自动化学报, 2016, 42(4): 481-494. | 6 | YUAN Y, WANG F. Blockchain: The state of the art and future trends[J]. Acta Automatica Sinica, 2016, 42(4): 481-494. | 7 | 曾诗钦, 霍如, 黄韬, 等. 区块链技术研究综述: 原理, 进展与应用[J]. 通信学报, 2020, 41(1): 134-151. | 7 | ZENG S, HUO R, HUANG T, et al. Survey of blockchain: Principle, progress and application[J]. Journal on Communications, 2020, 41(1): 134-151. | 8 | DOWLING M. Is non-fungible token pricing driven by cryptocurrencies?[J]. Finance Research Letters, 2022, 44: ID 102097. | 9 | 秦蕊, 李娟娟, 王晓, 等. NFT: 基于区块链的非同质化通证及其应用[J]. 智能科学与技术学报, 2021, 3(2): 234-242. | 9 | QIN R, LI J, WANG X, et al. NFT: Blockchain-based non-fungible token and applications[J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(2): 234-242. | 10 | WANG Q, LI R, WANG Q, et al. Non-fungible token (NFT): Overview, evaluation, opportunities and challenges[J/OL]. arXiv:, 2021. | 11 | BAO H, ROUBAUD D. Non-fungible token: A systematic review and research agenda[J]. Journal of Risk and Financial Management, 2022, 15(5): ID 215. | 12 | SHAFI M, MOLISCH A F, SMITH P J, et al. 5G: A tutorial overview of standards, trials, challenges, deployment, and practice[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(6): 1201-1221. | 13 | DOGRA A, JHA R K, JAIN S. A survey on beyond 5G network with the advent of 6G: Architecture and emerging technologies[J]. IEEE Access, 2020, 9: 67512-67547. | 14 | CAMBRIA E, WHITE B. Jumping NLP curves: A review of natural language processing research[J]. IEEE Computational Intelligence Magazine, 2014, 9(2): 48-57. | 15 | VOULODIMOS A, DOULAMIS N, DOULAMIS A, et al. Deep learning for computer vision: A brief review[J]. Computational Intelligence and Neuroscience, 2018, 2018: 1-2. | 16 | PARK D H, KIM H K, CHOI I Y, et al. A literature review and classification of recommender systems research[J]. Expert Systems with Applications, 2012, 39(11): 10059-10072. | 17 | YNAG Q, ZHAO Y, HUANG H, et al. Fusing blockchain and AI with metaverse: A survey[J/OL]. arXiv:, 2022. | 18 | WILLIAMS T, SZAFIR D, CHAKRABORTI T, et al. Virtual, augmented, and mixed reality for human-robot interaction (vam-hri)[C]// 2019 14th ACM/IEEE International Conference on Human-Robot Interaction. Piscataway, New York, USA: IEEE, 2019: 671-672. | 19 | ZHANG J, ZONG C. Deep neural networks in machine translation: An overview[J]. IEEE Intelligent Systems, 2015, 30(5): 16-25. | 20 | PHILLIPS-WREN G. AI tools in decision making support systems: A review[J]. International Journal on Artificial Intelligence Tools, 2012, 21(2): ID 1240005. | 21 | FAROOQ M U, WASEEM M, MAZHAR S, et al. A review on Internet of Things (IoT)[J]. International Journal of Computer Applications, 2015, 113(1): 1-7. | 22 | MADAKAM S, LAKE V, LAKE V, et al. Internet of Things (IoT): A literature review[J]. Journal of Computer and Communications, 2015, 3(5): ID 164. | 23 | LI Z, WANG J, HIGGS R, et al. Design of an intelligent management system for agricultural greenhouses based on the internet of things[C]// 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). Piscataway, New York, USA: IEEE, 2017, 2: 154-160. | 24 | HAN J, LIN N, RUAN J, et al. A model for joint planning of production and distribution of fresh produce in agricultural internet of things[J]. IEEE Internet of Things Journal, 2020, 8(12): 9683-9696. | 25 | ZHANG J, RAO Y, MAN C, et al. Identification of cucumber leaf diseases using deep learning and small sample size for agricultural Internet of Things[J]. International Journal of Distributed Sensor Networks, 2021, 17(4): ID 15501477211007407. | 26 | HAM H, WESLEY J, HENDRA H. Computer vision based 3D reconstruction: A review[J]. International Journal of Electrical and Computer Engineering, 2019, 9(4): ID 2394. | 27 | MA Z, LIU S. A review of 3D reconstruction techniques in civil engineering and their applications[J]. Advanced Engineering Informatics, 2018, 37: 163-174. | 28 | POLLEFEYS M, NISTéR D, FRAHM J M, et al. Detailed real-time urban 3D reconstruction from video[J]. International Journal of Computer Vision, 2008, 78(2): 143-167. | 29 | GOMES L, BELLON O R P, SILVA L. 3D reconstruction methods for digital preservation of cultural heritage: A survey[J]. Pattern Recognition Letters, 2014, 50: 3-14. | 30 | YIMYAM P, CLARK A. 3D reconstruction and feature extraction for agricultural produce grading[C]// 2016 8th International Conference on Knowledge and Smart Technology (KST). Piscataway, New York, USA: IEEE, 2016: 136-141. | 31 | MOONRINTA J, CHAIVIVATRAKUL S, DAILEY M, et al. Fruit detection, tracking, and 3D reconstruction for crop mapping and yield estimation[C]// 2010 11th International Conference on Control Automation Robotics & Vision. Piscataway, New York, USA: IEEE, 2010: 1181-1186. | 32 | 朱荣胜, 李帅, 孙永哲, 等. 作物三维重构技术研究现状及前景展望[J]. 智慧农业(中英文), 2021, 3(3): 94-115. | 32 | ZHU R, LI S, SUN Y, et al. Research advances and prospects of crop 3D reconstruction technology[J]. Smart Agriculture, 2021, 3(3): 94-115. | 33 | RASHID A, CHATURVEDI A. Cloud computing characteristics and services: A brief review[J]. International Journal of Computer Sciences and Engineering, 2019, 7(2): 421-426. | 34 | SITTóN-CANDANEDO I, ALONSO R S, CORCHADO J M, et al. A review of edge computing reference architectures and a new global edge proposal[J]. Future Generation Computer Systems, 2019, 99: 278-294. | 35 | KARAR M E, ALSUNAYDI F, ALBUSAYMI S, et al. A new mobile application of agricultural pests recognition using deep learning in cloud computing system[J]. Alexandria Engineering Journal, 2021, 60(5): 4423-4432. | 36 | GOYA W A, DE ANDRADE M R, ZUCCHI A C, et al. The use of distributed processing and cloud computing in agricultural decision-making support systems[C]// 2014 IEEE 7th International Conference on Cloud Computing. Piscataway, New York, USA: IEEE, 2014: 721-728. | 37 | FAST-BERGLUND ?, GONG L, LI D. Testing and validating extended reality (XR) technologies in manufacturing[J]. Procedia Manufacturing, 2018, 25: 31-38. | 38 | BERRYMAN D R. Augmented reality: A review[J]. Medical Reference Services Quarterly, 2012, 31(2): 212-218. | 39 | HALARNKAR P, SHAH S, SHAH H, et al. A review on virtual reality[J]. International Journal of Computer Science Issues, 2012, 9(6): ID 325. | 40 | ROKHSARITALEMI S, SADEGHI-NIARAKI A, CHOI S M. A review on mixed reality: Current trends, challenges and prospects[J]. Applied Sciences, 2020, 10(2): ID 636. | 41 | RAMADAN R A, VASILAKOS A V. Brain computer interface: Control signals review[J]. Neurocomputing, 2017, 223: 26-44. | 42 | ALLISON B Z, WOLPAW E W, WOLPAW J R. Brain-computer interface systems: Progress and prospects[J]. Expert review of Medical Devices, 2007, 4(4): 463-474. | 43 | 刘大同, 郭凯, 王本宽, 等. 数字孪生技术综述与展望[J]. 仪器仪表学报, 2018, 39(11): 1-10. | 43 | LIU D, GUO K, WANG B, et al. Summary and perspective survey on digital twin technology[J]. Chinese Journal of Scientific Instrument, 2018, 39(11): 1-10. | 44 | WRIGHT L, DAVIDSON S. How to tell the difference between a model and a digital twin[J]. Advanced Modeling and Simulation in Engineering Sciences, 2020, 7(1): 1-13. | 45 | VAN D B S, KLOPPENBURG S, KOK E J, et al. Digital twins in agri-food: Societal and ethical themes and questions for further research[J]. NJAS: Impact in Agricultural and Life Sciences, 2021, 93(1): 98-125. | 46 | 顾生浩, 卢宪菊, 王勇健, 等. 数字孪生系统在农业生产中的应用探讨[J]. 中国农业科技导报, 2021, 23(10): 82-89. | 46 | GU S, LU X, WANG Y, et al. Application of agricultural digital twin system in crop production system[J]. Journal of Agricultural Science and Technology, 2021, 23(10): 82-89. | 47 | 王飞跃. 平行系统方法与复杂系统的管理和控制[J]. 控制与决策, 2004, 19(5): 485-489. | 47 | WANG F. Parallel system methods for management and control of complex systems[J]. Control and Decision, 2004, 19(5): 485-489. | 48 | 王飞跃. 人工社会, 计算实验, 平行系统--关于复杂社会经济系统计算研究的讨论[J]. 复杂系统与复杂性科学, 2004(4): 25-35. | 48 | WANG F. Artificial societies, computational expermients, and parallel systems: A discussion on computational theory of complex social-economic systems[J]. Complex Systems and Complexity Science, 2004(4): 25-35. | 49 | 尹培丽, 王建华, 陈阳泉, 等. 平行测量: 复杂测量系统的一个新型理论框架及案例研究[J]. 自动化学报, 2018, 44(3): 425-433. | 49 | YIN P, WANG J, CHEN Y, et al. Parallel measurements: A new theory and framework for complex measurement system and a case study[J]. Acta Automatica Sinica, 2018, 44(3): 425-433. | 50 | 张俊, 许沛东, 王飞跃. 平行系统和数字孪生的一种数据驱动形式表示及计算框架[J]. 自动化学报, 2020, 46(7): 1346-1356. | 50 | ZHANG J, XU P, WANG F. Parallel systems and digital twins: A data-driven mathematical representation and computational framework[J]. Acta Automatica Sinica, 2020, 46(7): 1346-1356. | 51 | NASIRAHMADI A, HENSEL O. Toward the next generation of digitalization in agriculture based on digital twin paradigm[J]. Sensors, 2022, 22(2): ID 498. | 52 | NEETHIRAJAN S, KEMP B. Digital twins in livestock farming[J]. Animals, 2021, 11(4): ID 1008. | 53 | GHANDAR A, AHMED A, ZULFIQAR S, et al. A decision support system for urban agriculture using digital twin: A case study with aquaponics[J]. IEEE Access, 2021, 9: 35691-35708. | 54 | LI W, ZHU D, WANG Q. A single view leaf reconstruction method based on the fusion of ResNet and differentiable render in plant growth digital twin system[J]. Computers and Electronics in Agriculture, 2022, 193: ID 106712. | 55 | PYLIANIDIS C, OSINGA S, ATHANASIADIS I N. Introducing digital twins to agriculture[J]. Computers and Electronics in Agriculture, 2021, 184: ID 105942. | 56 | VERDOUW C, TEKINERDOGAN B, BEULENS A, et al. Digital twins in smart farming[J]. Agricultural Systems, 2021, 189: ID 103046. | 57 | CHAUX J D, SANCHEZ-LONDONO D, BARBIERI G. A digital twin architecture to optimize productivity within controlled environment agriculture[J]. Applied Sciences, 2021, 11(19): ID 8875. | 58 | 康孟珍, 王秀娟, 华净, 等. 平行农业: 迈向智慧农业的智能技术[J]. 智能科学与技术学报, 2019, 1(2): 107-117. | 58 | KANG M, WANG X, HUA J, et al. Parallel agriculture: Intelligent technology toward smart agriculture[J]. Chinese Journal of Intelligent Science and Technology, 2019, 1(2): 107-117. | 59 | DE REFFYE P, JAEGER M. Modèles mathématiques du développement et de la croissance de l' architecture des plantes. Le cas du modèle GreenLab[M]. Paris: Editions Matériologiques, 2011. | 60 | GUTIé RREZ-ESTRADA J C, PULIDO-CALVO I, BILTON D T. Consistency of fuzzy rules in an ecological context[J]. Ecological Modeling, 2013, 251: 187-198. | 61 | 袁勇, 周涛, 周傲英, 等. 区块链技术: 从数据智能到知识自动化[J]. 自动化学报, 2017, 43(9): 1485-1490. | 61 | YUAN Y, ZHOU T, ZHOU A, et al. Blockchain technology: From data intelligence to knowledge automation[J]. Acta Automatica Sinica, 2017, 43(9): 1485-1490. | 62 | 王飞跃. 平行控制与数字孪生: 经典控制理论的回顾与重铸[J]. 智能科学与技术学报, 2020, 2(3): 293-300. | 62 | WANG F. Parallel control and digital twins: Control theory revisited and reshaped[J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(3): 293-300. | 63 | 赵春江, 李瑾, 冯献. 面向2035年智慧农业发展战略研究[J]. 中国工程科学, 2021, 23(4): 1-9. | 63 | ZHAO C, LI J, FENG X. Development strategy of smart agriculture for 2035 in China[J]. Strategic Study of CAE, 2021, 23(4): 1-9. | 64 | 黑龙江农业科学. “元宇宙+农业”如何改变农业?[EB/OL]. [2022-05-31]. . | 65 | 超级码. 超级码硬核发布浙江首个元宇宙智慧茶园, 数字农业高玩来袭[EB/OL]. [2022-06-10]. . | 66 | NICOLA K. What is the future of the metaverse for indoor agriculture?[EB/OL]. [2022-05-18]. . | 67 | 泰国网. 泰国开启"元宇宙果园"[EB/OL]. [2022-05-18]. . | 68 | 南方农村报. 从化荔枝节盛大开幕!国内首个荔枝元宇宙虚拟直播来了[EB/OL]. [2022-07-18]. . | 69 | 南方农村报. 首个预制菜元宇宙人"小鲜妹"将直播![EB/OL]. [2022-05-18]. . | 70 | 环球网. 数字农业高玩来袭, 超级码科技股份硬核发布浙江首个元宇宙智慧茶园[EB/OL]. [2022-05-18]. . | 71 | IFDIL I, SITUMORANG D D B, FIRMAN F, et al. Virtual reality in metaverse for future mental health-helping profession: An alternative solution to the mental health challenges of the COVID-19 pandemic[J]. Journal of Public Health, 2022: ID fdac049. | 72 | PARK S, KIM S. Identifying world types to deliver gameful experiences for sustainable learning in the metaverse[J]. Sustainability, 2022, 14(3): ID 1361. | 73 | KHANSULIVONG C, WICHA S, TEMDEE P. Adaptive of new technology for agriculture online learning by metaverse: A case study in faculty of agriculture, national university of Laos[C]// 2022 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering. Piscataway, New York, USA: IEEE, 2022: 428-432 | 74 | 杨信廷, 钱建平, 孙传恒, 等. 农产品及食品质量安全追溯系统关键技术研究进展[J]. 农业机械学报, 2014, 45(11): 212-222. | 74 | YANG X, QIAN J, SUN C, et al. Key technologies for establishment agricultural products and food quality safety traceability systems[J]. Transactions of the CSAM, 2014, 45(11): 212-222. | 75 | 钱建平, 吴文斌, 杨鹏. 新一代信息技术对农产品追溯系统智能化影响的综述[J]. 农业工程学报, 2020, 36(5): 182-191. | 75 | QIAN J, WU W, YANG P. Review on agricultural products smart traceability system affected by new generation information technology[J]. Transactions of the CSAE, 2020, 36(5): 182-191. | 76 | 孙传恒, 于华竟, 徐大明, 等. 农产品供应链区块链追溯技术研究进展与展望[J]. 农业机械学报, 2021, 52(1): 1-13. | 76 | SUN C, YU H, XU D, et al. Review and prospect of agri-products supply chain traceability based on blockchain technology[J]. Transactions of the CSAM, 2021, 52(1): 1-13. |
|