1 |
国务院. 国务院关于加快推进农业机械化和农机装备产业转型升级的指导意见[J]. 中华人民共和国国务院公报, 2019(1): 34-39.
|
|
The State Council of the People's Republic of China. Guiding opinions of the state council on accelerating agricultural mechanization and the transformation and upgrading of the agricultural machinery and equipment industry[J]. Gazette of the state council of the People's republic of China, 2019(1): 34-39.
|
2 |
李克强. 政府工作报告——2023年3月5日在第十四届全国人民代表大会第一次会议上[J]. 中华人民共和国国务院公报, 2023(8): 5-19.
|
|
LI K Q. Government work report—At the first session of the 14th national People's congress on March 5th, 2023[J]. Gazette of the state council of the People's republic of China, 2023(8): 5-19.
|
3 |
TAO F, ZHANG M, NEE A Y C. Digital twin driven smart manufacturing[M]. San Diego: Academic Press, 2019.
|
4 |
陶飞, 戚庆林, 张萌. 数字孪生及车间实践[M]. 北京: 清华大学出版社, 2021.
|
|
TAO F, QI Q L, ZHANG M. Digital twin and its application in shop-floor[M]. Beijing: Tsinghua University Press, 2021.
|
5 |
KRITZINGER W, KARNER M, TRAAR G, et al. Digital Twin in manufacturing: A categorical literature review and classification[J]. IFAC-PapersOnLine, 2018, 51(11): 1016-1022.
|
6 |
LIU M N, FANG S L, DONG H Y, et al. Review of digital twin about concepts, technologies, and industrial applications[J]. Journal of manufacturing systems, 2021, 58: 346-361.
|
7 |
罗锡文, 廖娟, 邹湘军, 等. 信息技术提升农业机械化水平[J]. 农业工程学报, 2016, 32(20): 1-14.
|
|
LUO X W, LIAO J, ZOU X J, et al. Enhancing agricultural mechanization level through information technology[J]. Transactions of the Chinese society of agricultural engineering, 2016, 32(20): 1-14.
|
8 |
刘成良, 林洪振, 李彦明, 等. 农业装备智能控制技术研究现状与发展趋势分析[J]. 农业机械学报, 2020, 51(1): 1-18.
|
|
LIU C L, LIN H Z, LI Y M, et al. Analysis on status and development trend of intelligent control technology for agricultural equipment[J]. Transactions of the Chinese society for agricultural machinery, 2020, 51(1): 1-18.
|
9 |
陈学庚, 温浩军, 张伟荣, 等. 农业机械与信息技术融合发展现状与方向[J]. 智慧农业(中英文), 2020, 2(4): 1-16.
|
|
CHEN X G, WEN H J, ZHANG W R, et al. Advances and progress of agricultural machinery and sensing technology fusion[J]. Smart agriculture, 2020, 2(4): 1-16.
|
10 |
中国网信网. 中央网络安全和信息化委员会印发《“十四五”国家信息化规划》 [EB/OL]. [2023-05-05].
|
11 |
工业和信息化部. 工业和信息化部关于印发“十四五”信息化和工业化深度融合发展规划的通知 [EB/OL]. [2023-05-05]. .
|
12 |
工业和信息化部, 国家发展和改革委员会, 教育部, 等. 八部门关于印发《“十四五”智能制造发展规划》的通知[EB/OL]. [2023-05-05]. .
|
13 |
GRIEVES M. Virtually perfect: Driving Innovative and lean products through product lifecycle management[M]. Cocoa Beach: Space Coast Press, 2011
|
14 |
SHAFTO M, CONROY M, DOYLE R, et al. Draft modelling, simulation, information technology & processing roadmap[M/OL]. Washington: National Aeronautics and Space Administration, 2010 [2023-04-10]. .
|
15 |
SHAFTO M, CONROY M, DOYLE R, et al. Modeling, simulation, information technology & processing roadmap[J]. National aeronautics and space administration, 2012, 32(2012): 1-38.
|
16 |
GLAESSGEN E, STARGEL D. The digital twin paradigm for future NASA and U.S. air force vehicles[C]// Aiaa/asme/asce/ahs/asc Structures, Structural Dynamics & Materials Conference Aiaa/asme/ahs Adaptive Structures Conference Aiaa. Reston, Virigina, USA: AIAA, 2012.
|
17 |
陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1-18.
|
|
TAO F, LIU W R, ZHANG M, et al. Five-dimension digital twin model and its ten applications[J]. Computer integrated manufacturing systems, 2019, 25(1): 1-18.
|
18 |
陶飞, 张萌, 程江峰, 等. 数字孪生车间——一种未来车间运行新模式[J]. 计算机集成制造系统, 2017, 23(1): 1-9.
|
|
TAO F, ZHANG M, CHENG J F, et al. Digital twin workshop: A new paradigm for future workshop[J]. Computer integrated manufacturing systems, 2017, 23(1): 1-9.
|
19 |
VERDOUW C N, KRUIZE J W. Digital twins in farm management: Illustrations from the FIWARE accelerators SmartAgriFood and Fractals[C]// The International Tri-Conference for Precision Agriculture in 2017. Hamilton, New Zealand: Wageningen University, 2017.
|
20 |
VERDOUW C, TEKINERDOGAN B, BEULENS A, et al. Digital twins in smart farming[J]. Agricultural systems, 2021, 189: ID 103046.
|
21 |
PYLIANIDIS C, OSINGA S, ATHANASIADIS I N. Introducing digital twins to agriculture[J]. Computers and electronics in agriculture, 2021, 184: ID 105942.
|
22 |
Siemens. Digital enterprise industry solutions for agricultural OEMs[EB/OL]. [2023-05-05]. .
|
23 |
ZHANG Y N, DU Y F, YANG Z H, et al. Construction method of high-horsepower tractor digital twin[J]. Digital twin, 2022, 2: ID 12.
|
24 |
张霖. 关于数字孪生的冷思考及其背后的建模和仿真技术[J]. 系统仿真学报, 2020, 32(4): 1-10.
|
|
ZHANG L. Cold thinking about digital twinning and the modeling and simulation technology behind it[J]. Journal of system simulation, 2020, 32(4): 1-10.
|
25 |
张霖, 陆涵. 从建模仿真看数字孪生[J]. 系统仿真学报, 2021, 33(5): 995-1007.
|
|
ZHANG L, LU H. Discussing digital twin from of modeling and simulation[J]. Journal of system simulation, 2021, 33(5): 995-1007.
|
26 |
宋学官, 来孝楠, 何西旺, 等. 重大装备形性一体化数字孪生关键技术[J]. 机械工程学报, 2022, 58(10): 298-325.
|
|
SONG X G, LAI X N, HE X W, et al. Key technologies of shape-performance integrated digital twin for major equipment[J]. Journal of mechanical engineering, 2022, 58(10): 298-325.
|
27 |
郭大方, 杜岳峰, 栗晓宇, 等. 云-雾-边-端协同的农业装备数字孪生系统研究[J/OL]. 农业机械学报: 1-13 [2023-07-09]. .
|
|
GUO D F, DU Y F, LI X Y, et al. Digital twin system for agricultural machinery with cloud-fog-edge-terminal architecture[J/OL]. Transactions of the Chinese society for agricultural machinery: 1-13 [2023-07-09]. .
|