| 1 |  SOUALIOU S,  WANG Z W,  SUN W W, et al. Functional–structural plant models mission in advancing crop science: Opportunities and prospects [J]. Frontiers in plant science, 2021, 12: ID 747142. | 
																													
																						| 2 |  XIAO S F,  FEI S P,  LI Q, et al. The importance of using realistic 3D canopy models to calculate light interception in the field[J]. Plant phenomics, 2023, 5: ID 0082. | 
																													
																						| 3 |  YAN H P,  KANG M Z,  DE REFFYE P, et al. A dynamic, architectural plant model simulating resource-dependent growth[J]. Annals of botany, 2004, 93(5): 591-602. | 
																													
																						| 4 |  MATHIEU A,  COURNÈDE P H,  LETORT V, et al. A dynamic model of plant growth with interactions between development and functional mechanisms to study plant structural plasticity related to trophic competition[J]. Annals of botany, 2009, 103(8): 1173-1186. | 
																													
																						| 5 |  DE REFFYE P,  JAEGER M,  SABATIER S, et al. Modelling the interaction between functioning and organogenesis in a stochastic plant growth model: Methodology for parameter estimation and illustration[C]// 2018 6th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA). Piscataway, New Jersey, USA: IEEE, 2018: 102-110. | 
																													
																						| 6 |  OKURA F. 3D modeling and reconstruction of plants and trees: A cross-cutting review across computer graphics, vision, and plant phenotyping[J]. Breeding science, 2022, 72(1): 31-47. | 
																													
																						| 7 |  BOUKHANA M,  RAVAGLIA J,  HÉTROY-WHEELER F, et al. Geometric models for plant leaf area estimation from 3D point clouds: A comparative study[J]. Graphics and visual computing, 2022, 7: ID 200057. | 
																													
																						| 8 |  SANTOS T T,  KOENIGKAN L V,  BARBEDO J G A, et al. 3D plant modeling: Localization, mapping and segmentation for plant phenotyping using a single hand-held camera[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 247-263. | 
																													
																						| 9 |  HU C H,  LI P P,  PAN Z. Phenotyping of poplar seedling leaves based on a 3D visualization method[J]. International journal of agricultural and biological engineering, 2018, 11(6): 145-151. | 
																													
																						| 10 |  WU S,  WEN W L,  XIAO B X, et al. An accurate skeleton extraction approach from 3D point clouds of maize plants[J]. Frontiers in plant science, 2019, 10: ID 248. | 
																													
																						| 11 |  ZHENG C X,  WEN W L,  LU X J, et al. Three-dimensional wheat modelling based on leaf morphological features and mesh deformation[J]. Agronomy, 2022, 12(2): ID 414. | 
																													
																						| 12 |  NAGAI Y,  TANAYA H. Leaf reconstruction based on Gaussian mixture model from point clouds of leaf boundaries and veins[J]. International journal of automation technology, 2024, 18(2): 287-294. | 
																													
																						| 13 |  ANDO R,  OZASA Y,  GUO W. Robust surface reconstruction of plant leaves from 3D point clouds[J]. Plant phenomics, 2021, 2021: ID 3184185. | 
																													
																						| 14 |  PRUSINKIEWICZ P, et al. L-studio/cpfg: A software system for modeling plants[C]// Applications of Graph Transformations with Industrial Relevance. Berlin, Germany: Springer, 1999: 457-464. | 
																													
																						| 15 |  PRADAL C,  DUFOUR-KOWALSKI S,  BOUDON F, et al. OpenAlea: A visual programming and component-based software platform for plant modelling[J]. Functional plant biology, 2008, 35(10): 751-760. | 
																													
																						| 16 |  KNIEMEYER O,  BUCK-SORLIN G,  KURTH W. Groimp as a platform for functional-structural modelling of plants[M]// Functional-Structural Plant Modelling in Crop Production. Dordrecht: Springer Netherlands, 2007: 43-52. | 
																													
																						| 17 |  LI S W,  VAN DER WERF W,  GOU F, et al. An evaluation of Goudriaan's summary model for light interception in strip canopies, using functional-structural plant models[J]. In silico plants, 2024, 6(1): ID diae002. | 
																													
																						| 18 | 刘志浩. 形状引导的过程式植物建模[D]. 深圳: 中国科学院深圳先进技术研究院, 2021. | 
																													
																						|  |  LIU Z H. Shape driven procedural plant modeling[D]. Shenzhen: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 2021. | 
																													
																						| 19 | 王华. 植物主要器官三维重建及系统实现[D]. 杭州: 浙江工业大学, 2020. | 
																													
																						|  |  WANG H. Three-dimensional reconstruction of plant main organs and its system realization[D]. Hangzhou: Zhejiang University of Technology, 2020. | 
																													
																						| 20 |  KEMPTHORNE D M,  TURNER I W,  BELWARD J A, et al. Surface reconstruction of wheat leaf morphology from three-dimensional scanned data[J]. Functional plant biology, 2015, 42(5): 444-451. | 
																													
																						| 21 |  XU Y S,  TONG X H,  STILLA U. Voxel-based representation of 3D point clouds: Methods, applications, and its potential use in the construction industry[J]. Automation in construction, 2021, 126: ID 103675. | 
																													
																						| 22 |  ZHANG S. High-speed 3D shape measurement with structured light methods: A review[J]. Optics and Lasers in engineering, 2018, 106: 119-131. | 
																													
																						| 23 | 孙爱珍, 杨红云, 何火娇, 等. 水稻叶片三维可视化建模[J]. 安徽农业科学, 2008, 36(4): 1320-1321, 1423. | 
																													
																						|  |  SUN A Z,  YANG H Y,  HE H J, et al. 3D visual modeling of rice leaf blade[J]. Journal of Anhui agricultural sciences, 2008, 36(4): 1320-1321, 1423. |