1 | 新华网. 2021年全国粮食总产量达13657亿斤同比增长2.0%[EB/OL]. (2021-12-06)[2022-06-22].. | 2 | 汪懋华院士: 关于智慧农业释义与创新驱动发展的思考[J]. 农业工程技术, 2018, 38(21): 24-28. | 3 | 齐美娟. 精细农业的实践助推智慧农业创新发展——访中国工程院院士、国际欧亚科学院院士汪懋华[J]. 中国国情国力, 2018(7): 6-7, 5. | 4 | IDOJE G, DAGIUKLAS T, IQBAL M. Survey for smart farming technologies: Challenges and issues[J]. Computers & Electrical Engineering, 2021, 92: ID 107104. | 5 | The World Bank Group. Climate-Smart Agriculture [EB/OL]. (2021-04-05)[2022-06-22]. . | 6 | 胡瑞法, 刘万嘉文. 科技革命、颠覆性技术与智慧农业[J/OL]. [2022-07-24].智慧农业(中英文. | 6 | HU R, LIU W. Technological revolution, disruptive technology and smart agriculture[J/OL]. [2022-07-24].. . | 7 | 王亚华, 臧良震, 苏毅清. 2035年中国农业现代化前景展望[J]. 农业现代化研究, 2020, 41(1): 16-23. | 7 | WANG Y, ZANG L, SU Y. Prospects for China's agricultural modernization in 2035 [J]. Research of Agricultural Modernization, 2020, 41 (1): 16-23. | 8 | 马龙. 现代农业发展中物联网应用的困境分析[J]. 中国管理信息化, 2021, 24(24): 106-107. | 9 | 李道亮, 杨昊. 农业物联网技术研究进展与发展趋势分析[J]. 农业机械学报, 2018, 49(1): 1-20. | 9 | LI D, YANG H. State-of-the-art review for Internet of Things in agriculture[J]. Transactions of the CSAM, 2018, 49 (1): 1-20. | 10 | 黄魏, 许伟, 汪善勤, 等. 基于不确定性模型的土壤——环境关系知识获取方法的研究[J]. 土壤学报, 2018, 55(1): 54-63. | 10 | HUANG W, XU W, WANG S, et al. Extraction of knowledge about soil-environment relationship based on an uncertainty model[J]. Acta Pedologica Sinica, 2018, 55(1):54-63. | 11 | 赵福年, 王润元. 基于模式识别的半干旱区雨养春小麦干旱发生状况判别[J]. 农业工程学报, 2014, 30(24): 124-132. | 11 | ZHAO F, WANG R. Discrimination of drought occurrence for rainfed spring wheat in semi-arid area based on pattern recognition[J]. Transactions of the CSAE, 2014, 30(24): 124-132. | 12 | WHITE E L, THOMASSON J A, AUVERMANN B, et al. Report from the conference, 'identifying obstacles to applying big data in agriculture'[J]. Precision Agriculture, 2021, 22: 306-315. | 13 | KENDALL H, CLARK B, LI W . et al. Precision agriculture technology adoption: A qualitative study of small-scale commercial "family farms" located in the North China Plain[J]. Precision Agriculture, 2022, 23: 319-351. | 14 | 陈学庚, 温浩军, 张伟荣, 等. 农业机械与信息技术融合发展现状与方向[J]. 智慧农业(中英文), 2020, 2(4): 1-16. | 14 | CHEN X, WEN H, ZHANG W, et al. Advnces and progress of agricultural machinery and sensing technology fusion[J]. Smart Agriculture, 2020, 2 (4): 1-16. | 15 | 吴嘉敏, 贺玉成, 徐征, 等. 用于土壤水分测量的磁共振射频线圈宽频匹配方法[J]. 波谱学杂志, 2021, 38(3): 414-423. | 15 | WU J, HE Y, XU Z, et al. A wide-band matching method for radio frequency coils used in soil moisture measurement[J]. Chinese Journal of Magnetic Resonance, 2021, 38 (3): 414-423. | 16 | 吕中秀. 土壤环境监测过程中有机质测定方法对比分析[J]. 山东化工, 2021, 50(18): 291-292. | 16 | LYU Z. Comparative analysis of organic matter determination methods in the process of soil environment monitoring[J]. Shandong Chemical Industry, 2021, 50 (18): 291-292. | 17 | 张飞扬, 胡月明, 谢英凯, 等. 天空地一体耕地质量监测移动实验室集成设计[J]. 农业资源与环境学报, 2021, 38(6): 1029-1038. | 17 | ZHANG F, HU Y, XIE Y, et al. Design of integrated space-air-ground farmland quality monitoring mobile laboratory[J]. Journal of Agricultural Resources and Environment, 2021, 38(6): 1029-1038. | 18 | 路逍, 潘林沛, 李雁华, 等. 基于ISE的土壤硝态氮原位检测模型比较[J]. 农业机械学报, 2021, 52(S1): 297-303. | 18 | LU X, PAN L, LI Y, et al. Comparison of detection models for soil nitrate concentration based on ISE[J]. Transactions of the CSAM, 2021, 52 (S1): 297-303. | 19 | 蒋焕煜, 应义斌, 谢丽娟. 光谱分析技术在作物生长信息检测中的应用研究进展[J]. 光谱学与光谱分析, 2008(6): 1300-1304. | 19 | JIANG H, YING Y, XIE L. Research progress on application of spectral analysis technology in detection of crop growth information[J]. Spectroscopy and Spectral Analysis, 2008(6): 1300-1304. | 20 | 张晓东, 毛罕平, 倪军, 等. 作物生长多传感信息检测系统设计与应用[J]. 农业机械学报, 2009, 40(9): 164-170. | 20 | ZHANG X, MAO H, NI J, et al. Intelligent detection system of multi-sensor information for growing crops[J]. Transactions of the CSAM, 2009, 40(9): 164-170. | 21 | 邓若玲, 潘威杰, 王志琪, 等. 农作物表型技术及其智能装备研究进展与展望[J]. 现代农业装备, 2021, 42(1): 2-9. | 21 | DENG R, PAN W, WANG Z, et al. Research progress and prospect of crop phenotyping technology and its intelligent equipment[J]. Modern Agricultural Equipment, 2021, 42(1): 2-9. | 22 | 程曼, 袁洪波, 蔡振江, 等. 田间作物高通量表型信息获取与分析技术研究进展[J]. 农业机械学报, 2020, 51(S1): 314-324. | 22 | CHENG M, YUAN H, CAI Z, et al. Research progress on high-throughput phenotypic information acquisition and analysis technology of field crops[J]. Transactions of the CSAM, 2020, 51(S1): 314-324. | 23 | 卢少志, 杨蒙, 杨万能,等. 田间作物表型检测平台设计与试验[J]. 华中农业大学学报, 2021, 40(4): 209-218. | 23 | LU S, YANG M, YANG W, et al. Design and experiment of a platform for detecting phenotype of field crop[J]. Journal of Huazhong Agricultural University, 2021, 40 (4): 209-218. | 24 | 朱荣胜, 李帅, 孙永哲,等. 作物三维重构技术研究现状及前景展望[J]. 智慧农业(中英文), 2021, 3(3): 94-115. | 24 | ZHU R, LI S, SUN Y, et al. Research advances and prospects of crop 3D reconstruction technology[J]. Smart Agriculture, 2021, 3(3): 94-115. | 25 | 王翔宇, 温皓杰, 李鑫星, 等. 农业主要病害检测与预警技术研究进展分析[J]. 农业机械学报, 2016, 47(9): 266-277. | 25 | WANG X, WEN H, LI X, et al. Research progress analysis of mainly agricultural diseases detection and early warning technologies[J]. Transactions of the CSAM, 2016, 47(9): 266-277. | 26 | 杨国峰, 何勇, 冯旭萍, 等. 无人机遥感监测作物病虫害胁迫方法与最新研究进展[J]. 智慧农业(中英文), 2022, 4(1): 1-16. | 26 | YANG G, HE Y, FENG X, et al. Methods and new research progress of remote sensing monitoring crop diseases and pests stress using unmanned aerial vehicle[J]. Smart Agriculture, 2022, 4(1): 1-16. | 27 | 邓巍, 陈立平, 张瑞瑞, 等. 无人机精准施药关键技术综述[J]. 农业工程, 2020, 10(4): 1-10. | 27 | DENG W, CHEN L, ZHANG R, et al. Review on key technologies for UAV precision agro-chemical application[J]. Agricultural Engineering, 2020, 10 (4): 1-10. | 28 | 邬贺铨: 移动互联网已进入"大智移云"时代[EB/OL]. (2015-01-23) [2022-06-22]. . | 29 | SOLDANI D, MANZALINI A. Horizon 2020 and beyond: On the 5G operating system for a true digital society[J]. IEEE Vehicular Technology Magazine, 2015, 10(1): 32-42. | 30 | 黄韬, 刘江, 霍如, 等. 未来网络体系架构研究综述[J]. 通信学报, 2014, 35(8): 184-197. | 30 | HUANG T, LIU J, HUO R, et al. Survey of research on future network architectures[J]. Journal on Communications, 2014, 35(8): 184-197. | 31 | 杨普, 赵远洋, 李一鸣, 等. 基于多源信息融合的农业空地一体化研究综述[J].农业机械学报, 2021, 52(S1): 185-196. | 31 | YANG P, ZHAO Y, LI Y, et al. Review of research on integration of agricultural air-ground integration based on multi-source information fusion[J]. Transactions of the CSAM, 2021, 52(S1): 185-196. | 32 | 陈天恩, 刘军萍, 王登位,等. 农业云服务可适性技术研究进展[J]. 中国农业信息, 2018, 30(1): 67-78. | 32 | CHEN T, LIU J, WANG D, et al. Advances in adaptable technologies of agricultural cloud services[J]. China Agricultural Information, 2018, 30(1): 67-78. | 33 | 郑勇, 王光华, 杜鹏飞. 智慧农业云平台建设探索与实践[J]. 农业工程技术, 2018, 38(21): 31-35. | 34 | 许世卫. 农业高质量发展与农业大数据建设探讨[J]. 农学学报, 2019, 9(4): 13-17. | 34 | XU S. Discussion on agricultural high-quality development and agricultural big data construction [J]. Journal of Agriculture, 2019, 9 (4): 13-17. | 35 | 姜侯, 杨雅萍, 孙九林. 农业大数据研究与应用[J]. 农业大数据学报, 2019, 1(1): 5-15. | 35 | JIANG H, YANG Y, SUN J. Research and application of big data in agriculture[J]. Journal of Agricultural Big Data, 2019, 1(1): 5-15. | 36 | 张立辉. 农业大数据的应用及发展建议[J]. 南方农机, 2020, 51(14): 47-48. | 36 | ZHANG L. Application and development suggestions of big data in agriculture[J]. Southern Agricultural Machinery, 2020, 51(14): 47-48. | 37 | 宋长青, 温孚江, 李俊清, 等. 农业大数据研究应用进展与展望[J]. 农业与技术, 2018, 38(22): 153-156. | 38 | YOU Y. Data mining of regional economic analysis based on mobile sensor network technology[J]. Journal of Sensors, 2022, 2022: 1-13. | 39 | 罗锡文, 廖娟, 胡炼, 等. 我国智能农机的研究进展与无人农场的实践[J]. 华南农业大学学报, 2021, 42(6): 8-17. | 39 | LUO X, LIAO J, HU L, et al. Research progress of intelligent agricultural machinery and practice of unmanned farm in China[J]. Journal of South China Agricultural University, 2021, 42(6): 8-17. | 40 | 杨印生, 薛春序, 许莹, 等.智慧农业的社会经济特征、发展逻辑与系统阐释[J].吉林农业大学学报, 2021, 43(2): 146-152. | 40 | YANG Y, XUE C, XU Y, et al. Social and economic characteristics,development logic and systematic interpretation of smart agriculture[J]. Journal of Jilin Agricultural University, 2021, 43(2): 146-152. |
|