欢迎您访问《智慧农业(中英文)》官方网站! English

Smart Agriculture ›› 2024, Vol. 6 ›› Issue (1): 1-17.doi: 10.12133/j.smartag.SA202401017

• 专题--智能农业传感器技术 •    下一篇

农业传感器:研究进展、挑战与展望

王儒敬1,2()   

  1. 1. 中国科学院合肥物质科学研究院,智能机械研究所,安徽省智慧农业工程实验室,安徽 合肥 230031,中国
    2. 中科合肥智慧农业协同创新研究院,农业传感器与智能感知安徽省技术创新中心,安徽 合肥 231131,中国
  • 收稿日期:2024-01-05 出版日期:2024-01-30
  • 通信作者:
    王儒敬,博士,研究员,研究方向为农业传感器与智能感知。E-mail:

Agricultural Sensor: Research Progress, Challenges and Perspectives

WANG Rujing1,2()   

  1. 1. Intelligent Agriculture Engineering Laboratory of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
    2. Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei 231131, China
  • Received:2024-01-05 Online:2024-01-30
  • Foundation items:National Key Research and Development Program of China(2023YFD1702104); National Natural Science Foundation of China(32301688); Anhui Province Science and Technology Major Project(2020b06050001); Anhui Provincial Natural Science Foundation(1908085QE202); Science and Technology Mission Program of Anhui Province(S2022t06010123); The Dean Foundation of Hefei Institutes of Physical Science, Chinese Academy of Sciences(YZJJ2024QN38)
  • Corresponding author:
    WANG Rujing, E-mail:

摘要:

目的/意义 农业传感器是数字农业、信息农业、智慧农业等现代农业发展模式的源头技术,也是推动农业科技迭代升级和农业生产方式变革的重要驱动力。农业传感器应用环境(水、气及土壤)和监测对象(动植物)多样复杂、规模大,因此,高环境适应性、高可靠性和低成本的农业传感器是实现智慧农业的基础与核心。[进展]本文对农业传感器进行分类,并对农业传感器前沿研究趋势进行分析,综述农业传感器在不同应用场景下的研究现状,从农业环境传感器(水、大气和土壤等)、动植物生命信息传感器、农产品质量安全传感器和农机传感器四大类进行深入分析,总结现有农业传感器在研发和使用过程中的通用性和局限性。[结论/展望]在农业传感器面临的挑战与展望中,具体分析了现阶段农业传感器大规模应用严重不足的核心瓶颈,包括低成本化、专用化、高稳定性及自适应,归纳出“农业泛在感知”的概念,为农业传感器技术研发提供思路和参考。

关键词: 农业传感器, 泛在感知, 环境传感器, 土壤养分传感器, 表型传感器, 智慧农业

Abstract:

Significance Agricultural sensor is the key technology for developing modern agriculture. Agricultural sensor is a kind of detection device that can sense and convert physical signal, which is related to the agricultural environment, plants and animals, into an electrical signal. Agricultural sensors could be applied to monitor crops and livestock in different agricultural environments, including weather, water, atmosphere and soil. It is also an important driving force to promote the iterative upgrading of agricultural technology and change agricultural production methods. Progress The different agricultural sensors are categorized, the cutting-edge research trends of agricultural sensors are analyzed, and summarizes the current research status of agricultural sensors are summarized in different application scenarios. Moreover, a deep analysis and discussion of four major categories is conducted, which include agricultural environment sensors, animal and plant life information sensors, agricultural product quality and safety sensors, and agricultural machinery sensors. The process of research, development, the universality and limitations of the application of the four types of agricultural sensors are summarized. Agricultural environment sensors are mainly used for real-time monitoring of key parameters in agricultural production environments, such as the quality of water, gas, and soil. The soil sensors provide data support for precision irrigation, rational fertilization, and soil management by monitoring indicators such as soil humidity, pH, temperature, nutrients, microorganisms, pests and diseases, heavy metals and agricultural pollution, etc. Monitoring of dissolved oxygen, pH, nitrate content, and organophosphorus pesticides in irrigation and aquaculture water through water sensors ensures the rational use of water resources and water quality safety. The gas sensor monitors the atmospheric CO2, NH3, C2H2, CH4 concentration, and other information, which provides the appropriate environmental conditions for the growth of crops in greenhouses. The animal life information sensor can obtain the animal's growth, movement, physiological and biochemical status, which include movement trajectory, food intake, heart rate, body temperature, blood pressure, blood glucose, etc. The plant life information sensors monitor the plant's health and growth, such as volatile organic compounds of the leaves, surface temperature and humidity, phytohormones, and other parameters. Especially, the flexible wearable plant sensors provide a new way to measure plant physiological characteristics accurately and monitor the water status and physiological activities of plants non-destructively and continuously. These sensors are mainly used to detect various indicators in agricultural products, such as temperature and humidity, freshness, nutrients, and potentially hazardous substances (e.g., bacteria, pesticide residues, heavy metals, etc. Agricultural machinery sensors can achieve real-time monitoring and controlling of agricultural machinery to achieve real-time cultivation, planting, management, and harvesting, automated operation of agricultural machinery, and accurate application of pesticide, fertilizer. [Conclusions and Prospects In the challenges and prospects of agricultural sensors, the core bottlenecks of large-scale application of agricultural sensors at the present stage are analyzed in detail. These include low-cost, specialization, high stability, and adaptive intelligence of agricultural sensors. Furthermore, the concept of "ubiquitous sensing in agriculture" is proposed, which provides ideas and references for the research and development of agricultural sensor technology.

Key words: agricultural sensors, ubiquitous sensing, environmental sensors, soil nutrient sensors, phenotypic sensors, smart agriculture