1 |
王辉, 陈睿鹏, 余志雪, 等. 基于卟啉和半导体单壁碳纳米管的场效应气体传感器检测草莓恶疫霉[J]. 智慧农业(中英文), 2022, 4 (3): 143-151.
|
|
WANG H, CHEN R P, YU Z X, et al. Porphyrin and semiconducting single wall carbon nanotubes based semiconductor field effect gas sensor for determination of phytophthora strawberries[J]. Smart agriculture, 2022, 4(3): 143-151.
|
2 |
FUENTES A F, YOON S, LEE J, et al. High-performance deep neural network-based tomato plant diseases and pests diagnosis system with refinement filter bank[J]. Frontiers in plant science, 2018, 9: ID 1162.
|
3 |
KUMAR SAHU S, PANDEY M. An optimal hybrid multiclass SVM for plant leaf disease detection using spatial Fuzzy C-Means model[J]. Expert systems with applications, 2023, 214: ID 118989.
|
4 |
AHMED I, YADAV P K. Plant disease detection using machine learning approaches[J]. Expert systems, 2023, 40(5): ID e13136.
|
5 |
高荣华, 冯璐, 张月, 等. 基于多维随机森林的番茄灰霉病高光谱图像早期检测[J]. 光谱学与光谱分析, 2022, 42(10): 3226-3234.
|
|
GAO R H, FENG L, ZHANG Y, et al. Early detection of tomato gray mold based on multidimensional random forest hyperspectral image[J]. Spectroscopy and spectral analysis, 2022, 42(10): 3226-3234.
|
6 |
FERENTINOS K P. Deep learning models for plant disease detection and diagnosis[J]. Computers and electronics in agriculture, 2018, 145: 311-318.
|
7 |
LIAO J, CHEN M H, ZHANG K, et al. SC-Net: A new strip convolutional network model for rice seedling and weed segmentation in paddy field[J]. Computers and electronics in agriculture, 2024, 220: ID 108862.
|
8 |
HASSAN S M, MAJI A K. Plant disease identification using a novel convolutional neural network[J]. IEEE access, 2022, 10: 5390-5401.
|
9 |
RAHMAN C R, ARKO P S, ALI M E, et al. Identification and recognition of rice diseases and pests using convolutional neural networks[J]. Biosystems engineering, 2020, 194: 112-120.
|
10 |
FU G, LIU C, ZHOU R, et al. Classification for high resolution remote sensing imagery using a fully convolutional network[J]. Remote sensing. 2017, 9(5): ID 498.
|
11 |
SOEB M J A, JUBAYER MF. TARIN T A,et al. Tea leaf disease detection and identification based on YOLOv7 (YOLO-T)[J]. Scientific reports, 2023, 13: ID 6078.
|
12 |
崔金荣, 魏文钊, 赵敏. 基于改进MobileNetV3的水稻病害识别模型[J]. 农业机械学报, 2023, 54(11): 217-224, 276.
|
|
CUI J R, WEI W Z, ZHAO M. Rice disease identification model based on improved MobileNetV3[J]. Transactions of the Chinese society for agricultural machinery, 2023, 54(11): 217-224, 276.
|
13 |
PASALKAR J, GORDE G, MORE C, et al. Potato leaf disease detection using machine learning[J]. Current agriculture research journal, 2023; 11(3): 949-954.
|
14 |
CUBUK E D, ZOPH B, MANE D, et al. AutoAugment: Learning augmentation strategies from data[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2019: 113-123.
|
15 |
CONG W Y, ZHANG J F, NIU L, et al. DoveNet: Deep image harmonization via domain verification[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 8394-8403.
|
16 |
HONG Y J, HWANG U, YOO J, et al. How generative adversarial networks and their variants work[J]. ACM computing surveys, 2020, 52(1): 1-43.
|
17 |
GUO H L, LI M Y, HOU R Z, et al. Sample expansion and classification model of maize leaf diseases based on the self-attention CycleGAN[J]. Sustainability, 2023, 15(18): ID 13420.
|
18 |
HU G S, WU H Y, ZHANG Y, et al. A low shot learning method for tea leaf's disease identification[J]. Computers and electronics in agriculture, 2019, 163: ID 104852.
|
19 |
李天俊, 杨信廷, 陈晓, 等. 基于生成对抗网络和视觉-语义对齐的零样本害虫识别方法[J]. 智慧农业(中英文), 2024, 6(2): 72-84.
|
|
LI T J, YANG X T, CHEN X, et al. Zero-shot pest identification based on generative adversarial networks and visual-semantic alignment[J]. Smart agriculture, 2024, 6(2): 72-84.
|
20 |
ABBAS A, JAIN S, GOUR M, et al. Tomato plant disease detection using transfer learning with C-GAN synthetic images[J]. Computers and electronics in agriculture, 2021, 187: ID 106279.
|
21 |
ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2017: 2223-2232.
|
22 |
BARTH R, HEMMING J, VAN HENTEN E J. Optimising realism of synthetic images using cycle generative adversarial networks for improved part segmentation[J]. Computers and electronics in agriculture, 2020, 173: ID 105378.
|
23 |
VAN MARREWIJK B M, POLDER G, KOOTSTRA G. Investigation of the added value of CycleGAN on the plant pathology dataset[J]. IFAC-papers on line, 2022, 55(32): 89-94.
|
24 |
GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: A survey[J]. Computational visual media, 2022, 8(3): 331-368.
|
25 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018: 3-19.
|
26 |
ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2017: 1125-1134.
|
27 |
ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 586-595.
|
28 |
ZHAI G, MIN X. Perceptual image quality assessment: A survey[J]. Science China information sciences, 2020, 63: 1-52.
|
29 |
韩烨, 侯睿峥, 陈霄. 基于循环一致对抗网络的玉米灰斑病图像迁移方法研究[J]. 中国农机化学报, 2023, 44(2): 163-171.
|
|
HAN Y, HOU R Z, CHEN X. Research on images migration method of maize gray disease based on cyclic consistent adversarial network[J]. Journal of Chinese agricultural mechanization, 2023, 44(2): 163-171.
|
30 |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE transactions on image processing, 2004, 13(4): 600-612.
|
31 |
KORHONEN J, YOU J Y. Peak signal-to-noise ratio revisited: Is simple beautiful?[C]// 2012 Fourth International Workshop on Quality of Multimedia Experience. Piscataway, New Jersey, USA: IEEE, 2012: 37-38.
|
32 |
KIM J, KIM M, KANG H, et al. U-GAT-IT: Unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation[EB/OL]. arXiv: 1907.10830, 2019.
|
33 |
CAP Q H, UGA H, KAGIWADA S, et al. LeafGAN: An effective data augmentation method for practical plant disease diagnosis[J]. IEEE transactions on automation science and engineering, 2022, 19(2): 1258-1267.
|
34 |
WANG Q L, WU B G, ZHU P F, et al. ECA-net: Efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 11534-11542.
|
35 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2021: 13713-13722.
|