1 |
刘万好, 于素珍, 肖慧琳, 等. 蛇龙珠卷叶病毒病原鉴定和对果实品质的影响[J]. 中国酿造, 2020, 39(11): 187-191.
|
|
LIU W H, YU S Z, XIAO H L, et al. Pathogen identification of Cabernet Gernischet grapevine leaf-roll virus and its effect on fruit quality[J]. China brewing, 2020, 39(11): 187-191.
|
2 |
HOBBS M B, VENGCO S M, BOLTON S L, et al. Meeting the challenge of viral disease management in the US wine grape industries of California and Washington: Demystifying decision making, fostering agricultural networks, and optimizing educational resources[J]. Australian journal of grape and wine research, 2023, 2023: 1-17.
|
3 |
ALMEIDA R P P, DAANE K M, BELL V A, et al. Ecology and management of grapevine leafroll disease[J]. Frontiers in microbiology, 2013, 4: ID 94.
|
4 |
NAIDU R, ROWHANI A, FUCHS M, et al. Grapevine leafroll: A complex viral disease affecting a high-value fruit crop[J]. Plant disease, 2014, 98(9): 1172-1185.
|
5 |
GAO Z M, KHOT L R, NAIDU R A, et al. Early detection of grapevine leafroll disease in a red-berried wine grape cultivar using hyperspectral imaging[J]. Computers and electronics in agriculture, 2020, 179: ID 105807.
|
6 |
兰玉彬, 邓小玲, 曾国亮. 无人机农业遥感在农作物病虫草害诊断应用研究进展[J]. 智慧农业, 2019, 1(2): 1-19.
|
|
LAN Y B, DENG X L, ZENG G L. Advances in diagnosis of crop diseases, pests and weeds by UAV remote sensing[J]. Smart agriculture, 2019, 1(2): 1-19.
|
7 |
MAES W H, STEPPE K. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture[J]. Trends in plant science, 2019, 24(2): 152-164.
|
8 |
SCHIRRMANN M, LANDWEHR N, GIEBEL A, et al. Early detection of stripe rust in winter wheat using deep residual neural networks[J]. Frontiers in plant science, 2021, 12: ID 469689.
|
9 |
RUAN C, DONG Y Y, HUANG W J, et al. Integrating remote sensing and meteorological data to predict wheat stripe rust[J]. Remote sensing, 2022, 14(5): ID 1221.
|
10 |
XIAO D Q, PAN Y Q, FENG J Z, et al. Remote sensing detection algorithm for apple fire blight based on UAV multispectral image[J]. Computers and electronics in agriculture, 2022, 199: ID 107137.
|
11 |
LÓPEZ V, FERNÁNDEZ A, GARCÍA S, et al. An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics[J]. Information sciences, 2013, 250: 113-141.
|
12 |
SINGH A, JONES S, GANAPATHYSUBRAMANIAN B, et al. Challenges and opportunities in machine-augmented plant stress phenotyping[J]. Trends in plant science, 2021, 26(1): 53-69.
|
13 |
FUCHS M. Grapevine viruses: A multitude of diverse species with simple but overall poorly adopted management solutions in the vineyard[J]. Journal of plant pathology, 2020, 102(3): 643-653.
|
14 |
HUDSON D A, ZITNICK L. Generative adversarial Ttransformers[EB/OL]. arXiv: 2103.01209, 2021.
|
15 |
MAO X D, LI Q, XIE H R, et al. Least squares generative adversarial networks[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2017: 2813-2821.
|
16 |
CHONG M J, FORSYTH D. Effectively unbiased FID and inception score and where to find them[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 6069-6078.
|
17 |
CHIZAT L, ROUSSILLON P, LÉGER F, et al. Faster wasserstein distance estimation with the sinkhorn divergence[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. New York, USA: ACM, 2020: 2257-2269.
|
18 |
LIU Z, LIN Y T, CAO Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2022: 9992-10002.
|
19 |
ULYANOV D, VEDALDI A, LEMPITSKY V. Instance normalization: The missing ingredient for fast stylization[EB/OL]. arXiv: 1607.08022, 2016.
|
20 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2017: 2999-3007.
|
21 |
DENG J K, GUO J, XUE N N, et al. ArcFace: Additive angular margin loss for deep face recognition[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 4685-4694.
|
22 |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2015: 1-9.
|
23 |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 4510-4520.
|
24 |
ZOPH B, VASUDEVAN V, SHLENS J, et al. Learning transferable architectures for scalable image recognition[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 8697-8710.
|
25 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2016: 770-778.
|
26 |
WU H P, XIAO B, CODELLA N, et al. CvT: Introducing convolutions to vision transformers[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2022: 22-31.
|
27 |
YUAN L, CHEN Y P, WANG T, et al. Tokens-to-token ViT: Training vision transformers from scratch on ImageNet[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2022: 538-547.
|
28 |
VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008. 9(11): 2579-2605
|
29 |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[J]. International journal of computer vision, 2020, 128(2): 336-359.
|