1 |
李健, 陈长明. 基于计算机视觉的农作物害虫自动检测研究综述[J]. 微型电脑应用, 2009, 25(12): 62-64, 78.
|
|
LI J, CHEN C M. Research progress on automatic detection for crop pests based on computer vision[J]. Microcomputer applications, 2009, 25(12): 62-64, 78.
|
2 |
刁智华, 王欢, 宋寅卯, 等. 复杂背景下棉花病叶害螨图像分割方法[J]. 农业工程学报, 2013, 29(5): 147-152.
|
|
DIAO Z H, WANG H, SONG Y M, et al. Segmentation method for cotton mite disease image under complex background[J]. Transactions of the Chinese society of agricultural engineering, 2013, 29(5): 147-152.
|
3 |
宋勇, 陈兵, 王琼, 等. 基于无人机多光谱影像的棉花黄萎病监测[J]. 棉花学报, 2023, 35(2): 87-100.
|
|
SONG Y, CHEN B, WANG Q, et al. Monitoring of cotton Verticillium wilt based on unmanned aerial vehicle multispectral images[J]. Cotton science, 2023, 35(2): 87-100.
|
4 |
张楠楠, 张晓, 白铁成, 等. 基于CBAM-YOLO v7的自然环境下棉叶病虫害识别方法[J]. 农业机械学报, 2023, 54(S1): 239-244.
|
|
ZHANG N N, ZHANG X, BAI T C, et al. Identification method of cotton leaf pests and diseases in natural environment based on CBAM-YOLOv7[J]. Transactions of the Chinese society for agricultural machinery, 2023, 54(S1): 239-244.
|
5 |
YUAN Z W, ZHANG J. Feature extraction and image retrieval based on AlexNet[C]// Proceedings of Eighth International Conference on Digital Image Processing (ICDIP 2016. San Francisco,USA: SPIE, 2016, 10033: 65-69.
|
6 |
HE J, LI S, SHEN J M, et al. Facial expression recognition based on VGGNet convolutional neural network[C]// 2018 Chinese Automation Congress (CAC). Piscataway, New Jersey, USA: IEEE, 2018: 4146-4151.
|
7 |
AL-QIZWINI M, BARJASTEH I, AL-QASSAB H, et al. Deep learning algorithm for autonomous driving using GoogLeNet[C]// 2017 IEEE Intelligent Vehicles Symposium (IV). Piscataway, New Jersey, USA: IEEE, 2017: 89-96.
|
8 |
TARG S, ALMEIDA D, LYMAN K. Resnet in resnet: Generalizing residual architectures[EB/OL]. arXiv: 1603.08029, 2016.
|
9 |
ZHU Y, NEWSAM S. DenseNet for dense flow[C]// 2017 IEEE International Conference on Image Processing (ICIP). New York, USA: ACM, 2017: 790-794.
|
10 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
|
11 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2016: 779-788.
|
12 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2017: 6517-6525.
|
13 |
REDMON J, FARHADI A. YOLOv3: An incremental improvement[EB/OL]. arXiv: 1804. 02767, 2018.
|
14 |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[EB/OL]. arXiv: 2004.10934, 2020.
|
15 |
GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. arXiv: 2107. 08430, 2021.
|
16 |
王建, 徐闯. 基于YOLOv5s的脐橙虫害检测研究[J]. 工业控制计算机, 2023, 36(7): 105-106, 109.
|
|
WANG J, XU C. Research on detection of navel orange pests based on YOLOv5s[J]. Industrial control computer, 2023, 36(7): 105-106, 109.
|
17 |
FUENTES A, YOON S, KIM S C, et al. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition[J]. Sensors, 2017, 17(9): 2022.
|
18 |
何颖. 基于改进YOLOv5模型的经济林木虫害目标检测算法研究[D]. 昆明: 云南农业大学, 2022.
|
|
HE Y. Research on object detection algorithm of economic forestry pests based on improved YOLOv5[D]. Kunming: Yunnan Agricultural University, 2022.
|
19 |
REZA M T, MEHEDI N, TASNEEM N A, et al. Identification of crop consuming insect pest from visual imagery using transfer learning and data augmentation on deep neural network[C]// 2019 22nd International Conference on Computer and Information Technology (ICCIT). Piscataway, New Jersey, USA: IEEE, 2019.
|
20 |
CHEN J W, LIN W J, CHENG H J, et al. A smartphone-based application for scale pest detection using multiple-object detection methods[J]. Electronics, 2021, 10(4): ID 372.
|
21 |
魏陈浩, 杨睿, 刘振丙, 等. 具有双层路由注意力的YOLOv8道路场景目标检测方法[J]. 图学学报, 2023, 44(6): 1104-1111.
|
|
WEI C H, YANG R, LIU Z B, et al. YOLOv8 with bi-level routing attention for road scene object detection[J]. Journal of graphics, 2023, 44(6): 1104-1111.
|
22 |
LI R, WANG R J, XIE C J, et al. A coarse-to-fine network for aphid recognition and detection in the field[J]. Biosystems engineering, 2019, 187: 39-52.
|
23 |
LI H L, LI J, WEI H B, et al. Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles[EB/OL]. arXiv: 2206.02424, 2022.
|
24 |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 1577-1586.
|
25 |
RAO Y M, ZHAO W L, TANG Y S, et al. HorNet: Efficient high-order spatial interactions with recursive gated convolutions [EB/OL]. [2022-07-28].
|
26 |
TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 10778-10787.
|
27 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 3-19.
|
28 |
TERVEN J R, ESPARZA D M C. A comprehensive review of YOLO: From YOLOv1 to YOLOv8 and beyond[EB/OL]. arXiv:2304.00501, 2023.
|
29 |
高腾, 张先武, 李柏. 深度学习在安全帽佩戴检测中的应用研究综述[J]. 计算机工程与应用, 2023, 59(6): 13-29.
|
|
GAO T, ZHANG X W, LI B. Review on application of deep learning in helmet wearing detection[J]. Computer engineering and applications, 2023, 59(6): 13-29.
|
30 |
REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2019: 658-666.
|
31 |
TONG Z, CHEN Y, XU Z, et al. Wise-IoU: Bounding box regression loss with dynamic focusing mechanism[EB/OL]. arXiv: 2301.10051, 2023.
|