1 | WANG H, WANG Y, HOU X, et al. Bioelectronic nose based on single-stranded DNA and single-walled carbon nanotube to identify a major plant volatile organic compound (p-ethylphenol) released by phytophthora cactorum infected strawberries[J]. Nanomaterials, 2020,10(3): ID 479. | 2 | HUDLER G W. Phytophthora cactorum[J]. Forest Phytophthoras, 2013, 3(1): 1-8. | 3 | REBOLLAR-ALVITER A, ELLIS M A. Efficacy of azoxystrobin, pyraclostrobin, potassium phosphite, and mefenoxam for control of strawberry leather rot caused by Phytophthora cactorum[J]. Plant Health Progress, 2005, 6(1): 17. | 4 | HORKá M, HORKY J, MATOU?KOVá H, et al. Separation of plant pathogens from different hosts and tissues by capillary electromigration techniques[J]. Analytical Chemistry, 2007, 79(24): 9539-9546. | 5 | HARDHAM A R. Confocal microscopy in plant-pathogen interactions[J]. Plant Fungal Pathogens, 2012, 835: 295-309. | 6 | MUNAWAR M, TOLJAMO A, MARTIN F, et al. Recombinase polymerase amplification assay for fast, sensitive and on-site detection of Phytophthora cactorum without DNA extraction[J]. European Journal of Horticultural Science, 2019(1): ID 84. | 7 | VERDECCHIA E, CEUSTERMANS A, BAETS D, et al. Quantitative PCR for detection and quantification of Phytophthora cactorum in the cultivation of strawberry[J]. European Journal of Plant Pathology, 2021, 160(4): 867-882. | 8 | FANG Y, RAMASAMY R P. Current and prospective methods for plant disease detection[J]. Biosensors, 2015, 5(3): 537-561. | 9 | RIVERO V I, GIAYETTO A, ROSSINI M, et al. Detection of Phytophthora cactorum in the irrigation water in commercial orchards of 'Bartlett' pear in Villa Regina, Río Negro, Argentina[C]// XI International Pear Symposium 909. Leuven,Belgium: International Society for Horticultural Science, 2010. | 10 | JELE? H H, KRAWCZYK J, LARSEN T O, et al. Main compounds responsible for off-odour of strawberries infected by Phytophthora cactorum[J]. Letters in Applied Microbiology, 2005, 40(4): 255-259. | 11 | EIKEMO H, HAUGEN J E, LUNDBY F, et al. Resistance and off-odour variation in strawberry cultivars infected by Phytophthora cactorum[J]. IOBC/WPRS Bulletin., 2015, 109: 83-86. | 12 | DEY A. Semiconductor metal oxide gas sensors: A review[J]. Materials Science and Engineering: B, 2018, 229: 206-217. | 13 | LI H, SHI W, SONG J, et al. Chemical and biomolecule sensing with organic field-effect transistors[J]. Chemical Reviews, 2018, 119(1): 3-35. | 14 | LLOBET E. Gas sensors using carbon nanomaterials: A review[J]. Sensors and Actuators B: Chemical, 2013, 179: 32-45. | 15 | KUMAR D, CHATURVEDI P, SAHO P, et al. Effect of single wall carbon nanotube networks on gas sensor response and detection limit[J]. Sensors and Actuators B: Chemical, 2017, 240: 1134-1140. | 16 | EVANS G P, BUCKLEY D J, SKIPPER N T, et al. Single-walled carbon nanotube composite inks for printed gas sensors: Enhanced detection of NO2, NH3, EtOH and acetone[J]. RSC Advances, 2014, 4(93): 51395-51403. | 17 | XU K, FU C, GAO Z, et al. Nanomaterial-based gas sensors: A review[J]. Instrumentation Science & Technology, 2018, 46(2): 115-145. | 18 | ALBISS B A, SAKHANEH W A, JUMAH I, et al. NO2 Gas sensing properties of ZnO/single-wall carbon nanotube composites[J]. IEEE Sensors Journal, 2010, 10(12): 1807-1812. | 19 | ESTEVES C H A, IGLESIAS B A, LI R W C, et al. New composite porphyrin-conductive polymer gas sensors for application in electronic noses[J]. Sensors and Actuators B: Chemical, 2014, 193: 136-141. | 20 | KORPOSH S, KODAIRA S, SELYANCHYN R, et al. Porphyrin-nanoassembled fiber-optic gas sensor fabrication: Optimization of parameters for sensitive ammonia gas detection[J]. Optics & Laser Technology, 2018, 101: 1-10. | 21 | WANG L, LI H, DENG J, et al. Recent advances in porphyrin-derived sensors[J]. Current Organic Chemistry, 2013, 17(24): 3078-3091. | 22 | PETER C, SCHMITT K, APITZ M, et al. Metallo-porphyrin zinc as gas sensitive material for colorimetric gas sensors on planar optical waveguides[J]. Microsystem Technologies, 2012, 18(7): 925-930. | 23 | WANG H, LIU Y, WANG J, et al. Electrochemical impedance biosensor array based on DNAzyme-functionalized single-walled carbon nanotubes using Gaussian process regression for Cu (II) and Hg (II) determination[J]. Microchimica Acta, 2020, 187(4): 1-9. | 24 | RYABENKO A G, DOROFEEVA T V, ZVEREVA G I. UV-VIS-NIR spectroscopy study of sensitivity of single-wall carbon nanotubes to chemical processing and Van-der-Waals SWNT/SWNT interaction. Verification of the SWNT content measurements by absorption spectroscopy[J]. Carbon, 2004, 42(8-9): 1523-1535. | 25 | LI Y, RAHMAN A F M M, LIU G, et al. Enrichment of large-diameter single-walled carbon nanotubes (SWNTs) with metallo-octaethylporphyrins[J]. Materials, 2013, 6(8): 3064-3078. | 26 | WANG H, RAMNANI P, PHAM T, et al. Asymptomatic diagnosis of Huanglongbing disease using metalloporphyrin functionalized single-walled carbon nanotubes sensor arrays[J]. Frontiers in Chemistry, 2020, 8: ID 362. |
|