Smart Agriculture ›› 2024, Vol. 6 ›› Issue (2): 95-106.doi: 10.12133/j.smartag.SA202310014
• Special Issue--Agricultural Information Perception and Models • Previous Articles Next Articles
FAN Jiangchuan1,2,4, WANG Yuanqiao2,3, GOU Wenbo2,4, CAI Shuangze2, GUO Xinyu2(), ZHAO Chunjiang2()
Received:
2023-10-18
Online:
2024-03-30
Foundation items:
About author:
FAN Jiangchuan, E-mail: fanjc@nercita.org.cn
corresponding author:
FAN Jiangchuan, WANG Yuanqiao, GOU Wenbo, CAI Shuangze, GUO Xinyu, ZHAO Chunjiang. Fast Extracting Method for Strawberry Leaf Age and Canopy Width Based on Instance Segmentation Technology[J]. Smart Agriculture, 2024, 6(2): 95-106.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202310014
Table 2
Research on strawberry image processing and improved Mask R-CNN instance segmentation with ablation experiment
骨干网络 | 损失函数 | 检测框准确率/% | 掩膜准确率/% | 叶龄检测准确率/% |
---|---|---|---|---|
ResNeSt-101* | BCELoss | 89.6(Best) | 80.1(Best) | 99.3(Best) |
ResNeSt-50* | BCELoss | 86.2 | 77.0 | 98.0 |
ResNet-101* | BCELoss | 87.8 | 78.8 | 98.0 |
ResNet-50* | BCELoss | 84.9 | 75.2 | 96.1 |
ResNeSt-101 | BCELoss | 82.7 | 77.3 | 96.5 |
ResNeSt-50 | BCELoss | 81.4 | 76.9 | 95.1 |
ResNeSt-101* | Cross Entropy Loss | 87.2 | 78.1 | 97.6 |
ResNeSt-50* | Cross Entropy Loss | 85.0 | 74.7 | 97.2 |
Table 3
Comparison of parameter quantity and execution efficiency between improved Mask R-CNN model and other instance segmentation model sets in strawberry image processing research
模型类别 | 模型参数量/M | 训练设备上推理速度/FPS | 测试设备的推理速度/FPS |
---|---|---|---|
改进型Mask R-CNN(本研究) | 420.9 | 28.2 | 12.9 |
Mask R-CNN(原始) | 480.1 | 20.4 | 7.5 |
YOLOv8 | 640.5 | 19.3 | 6.3 |
Yolact | 380.7 | 25.4 | 11.4 |
Yolact++ | 365.5 | 24.9 | 11.0 |
Table 4
Comparison of Mask accuracy and detection box accuracy of different models in strawberry image processing under the same input and parameters
模型类别 | 掩膜准确率/% | 检测框准确率/% |
---|---|---|
改进Mask R-CNN(本研究) | 80.1 | 89.6 |
Mask R-CNN(原始) | 76.2 | 86.2 |
Yolact | 76.5 | 84.9 |
Yolact++ | 77.3 | 86.0 |
YOLOv8 | 81.9 | 89.2 |
YOLOv5 | — | 88.2 |
YOLOX | — | 90.1 |
DeepLabv3+ | 78.8 | — |
U-Net | 76.5 | — |
Table 5
Accuracy of different models for strawberry plant and leaf numbers
模型类别 | 模型正确检出值/人工计数值 | 正确率/% |
---|---|---|
改进型Mask R-CNN(本研究)* | 412/415 | 99.3(Best) |
改进型Mask R-CNN(本研究)※ | 6 014/6 136 | 98.0(Best) |
Mask R-CNN(原始)* | 405/415 | 97.6 |
Mask R-CNN(原始)※ | 5 876/6 136 | 95.8 |
Yolact* | 403/415 | 97.1 |
Yolact※ | 5 993/6 136 | 97.7 |
Yolact++* | 410/415 | 98.8 |
Yolact++※ | 5 899/6 136 | 96.1 |
YOLOv8* | 412/415 | 99.3(Best) |
YOLOv8※ | 5 993/6 136 | 97.7 |
YOLOv5* | 412/415 | 99.3(Best) |
YOLOv5※ | 6 001/6 136 | 97.8 |
YOLOX* | 412/415 | 99.3(Best) |
YOLOX※ | 6 009/6 136 | 97.9 |
1 |
|
2 |
|
3 |
|
4 |
张日红, 区建爽, 李小敏, 等. 基于改进YOLOv4的轻量化菠萝苗心检测算法[J]. 农业工程学报, 2023, 39(4): 135-143.
|
|
|
5 |
|
6 |
赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7.
|
|
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
李兴旭, 陈雯柏, 王一群, 等. 基于级联视觉检测的樱桃番茄自动采收系统设计与试验[J]. 农业工程学报, 2023, 39(1): 136-145.
|
|
|
16 |
朱志英. 基于STM32的地空两用农业信息采集机器人研究[J]. 农机化研究, 2021, 43(5): 68-72.
|
|
|
17 |
|
18 |
|
19 |
|
20 |
杨文姬, 胡文超, 赵应丁, 等. 基于改进Yolov5植物病害检测算法研究[J]. 中国农机化学报, 2023, 44(1): 108-115.
|
|
|
21 |
|
22 |
李康顺,杨振盛,江梓锋,等. 基于改进 YOLOX-Nano 的农作物叶片病害检测与识别方法[J]. 华南农业大学学报, 2023, 44(4): 593-603.
|
|
|
23 |
|
24 |
|
25 |
|
26 |
张慧春, 周宏平, 郑加强, 等. 植物表型平台与图像分析技术研究进展与展望[J]. 农业机械学报, 2020, 51(3): 1-17.
|
|
|
27 |
|
28 |
|
29 |
|
30 |
|
31 |
|
32 |
|
33 |
|
34 |
|
[1] | WENG Zhi, FAN Qi, ZHENG Zhiqiang. Automatic Measurement Method of Beef Cattle Body Size Based on Multimodal Image Information and Improved Instance Segmentation Network [J]. Smart Agriculture, 2024, 6(4): 64-75. |
[2] | ZHANG Yanqi, ZHOU Shuo, ZHANG Ning, CHAI Xiujuan, SUN Tan. A Regional Farming Pig Counting System Based on Improved Instance Segmentation Algorithm [J]. Smart Agriculture, 2024, 6(4): 53-63. |
[3] | WANG Herong, CHEN Yingyi, CHAI Yingqian, XU Ling, YU Huihui. Image Segmentation Method Combined with VoVNetv2 and Shuffle Attention Mechanism for Fish Feeding in Aquaculture [J]. Smart Agriculture, 2023, 5(4): 137-149. |
[4] | ZHOU Huamao, WANG Jing, YIN Hua, CHEN Qi. Phenotype Analysis of Pleurotus Geesteranus Based on Improved Mask R-CNN [J]. Smart Agriculture, 2023, 5(4): 117-126. |
[5] | LIU Xiaohang, ZHANG Zhao, LIU Jiaying, ZHANG Man, LI Han, FLORES Paulo, HAN Xiongzhe. Infield Corn Kernel Detection and Counting Based on Multiple Deep Learning Networks [J]. Smart Agriculture, 2022, 4(4): 49-60. |
[6] | HE Ruimin, ZHENG Kefeng, WEI Qinyang, ZHANG Xiaobin, ZHANG Jun, ZHU Yihang, ZHAO Yiying, GU Qing. Identification and Counting of Silkworms in Factory Farm Using Improved Mask R-CNN Model [J]. Smart Agriculture, 2022, 4(2): 163-173. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||