Smart Agriculture ›› 2022, Vol. 4 ›› Issue (2): 183-193.doi: 10.12133/j.smartag.SA202203006
• Intelligent Management and Control • Previous Articles
GENG Wenxuan1(), ZHAO Junye1(), RUAN Jiwei2(), HOU Yuehui3
Received:
2022-03-08
Online:
2022-06-30
Foundation items:
About author:
GENG Wenxuan, E-mail:wenxuangeng@163.com
corresponding author:
1. ZHAO Junye, E-mail:zhaojunye@caas.cn;2. RUAN Jiwei, E-mail:rjw@yaas.org.cn
CLC Number:
GENG Wenxuan, ZHAO Junye, RUAN Jiwei, HOU Yuehui. Comparative Study of the Regulation Effects of Artificial Intelligence-Assisted Planting Strategies on Strawberry Production in Greenhouse[J]. Smart Agriculture, 2022, 4(2): 183-193.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202203006
Table 1
Artificial intelligence planting strategy and technical protocols of strawberry
处理 | 主要特点 | 技术策略和实施过程 |
---|---|---|
AI-1 | 知识图谱+视觉识别+作物模型 | 结合草莓生长模型和视觉识别,通过知识推理[ |
AI-2 | 温室番茄种植模式迁移+双层算法 | 将荷兰温室番茄的智能种植模式[ |
AI-3 | 视觉识别+作物模型+专家系统 | 将作物生长仿真器SUCROS87[ |
AI-4 | 作物生长模型+发育模型 | 基于作物干物质生产分配规律和辐热积(Product of Thermal Effectiveness and Photosynthesis Active Radiation,TEP)构建草莓生长发育模型[ |
Table 2
Inflorescence differentiation period distribution of strawberry in AI planting groups
定植后天数/d | 第一花序 | 第二花序 | 第三花序 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AI-1 | AI-2 | AI-3 | AI-4 | AI-1 | AI-2 | AI-3 | AI-4 | AI-1 | AI-2 | AI-3 | AI-4 | |
12~26 | 1.25 | 13.92 | 5.00 | 20.83 | —— | —— | —— | —— | —— | —— | —— | —— |
27~43 | 97.50 | 86.08 | 91.25 | 52.78 | 5.00 | 6.41 | 3.90 | 3.90 | —— | —— | —— | —— |
44~58 | 1.250 | —— | 1.25 | 23.61 | 5.00 | —— | 1.30 | 11.69 | —— | —— | —— | —— |
59~73 | —— | —— | —— | 2.78 | 3.75 | 1.28 | —— | 50.65 | —— | —— | —— | 6.49 |
74~88 | —— | —— | 2.50 | —— | 51.25 | 29.40 | 28.57 | 22.08 | 2.50 | 1.27 | —— | —— |
89~104 | —— | —— | —— | —— | 32.50 | 57.69 | 63.64 | 6.49 | 5.00 | 5.06 | 2.56 | 3.90 |
105~119 | —— | —— | —— | —— | 2.50 | 5.13 | 2.60 | 5.19 | 20.00 | 21.52 | 21.79 | 59.74 |
120~134 | —— | —— | —— | —— | —— | —— | —— | —— | 50.00 | 18.99 | 73.08 | 24.68 |
Table 4
Comparison of strawberry yield and soluble solids content between AI planting groups and CK group
处理 | 分级产量/g | 总产量/g | 可溶性固形物/% | |||
---|---|---|---|---|---|---|
A级 | B级 | C级 | D级 | |||
CK | 96.40 | 449.80 | 436.40 | 1598.60 | 2581.20 | 10.21 |
AI-1 | 295.80 | 1535.20 | 225.30 | 4372.10 | 8456.10 | 9.80 |
AI-2 | 0.00 | 249.20 | 881.60 | 4406.30 | 5537.10 | 9.73 |
AI-3 | 0.00 | 529.00 | 1461.00 | 5583.20 | 7573.20 | 9.23 |
AI-4 | 30.60 | 481.00 | 1040.60 | 4325.20 | 5877.40 | 9.59 |
Table 5
Comparison of strawberry return on investment between AI planting group and CK group
处理 | 投入结构/元 | 总成本/元 | 产值/元 | 投入产出比 | ||||
---|---|---|---|---|---|---|---|---|
设施 | 管理 | 农药 | 肥料 | 水电费 | ||||
CK | 64.00 | 240.00 | 14.80 | 29.20 | 15.80 | 375.60 | 181.30 | 0.48 |
AI-1 | 267.00 | 171.20 | 9.80 | 36.90 | 105.60 | 590.40 | 642.10 | 1.09 |
AI-2 | 264.00 | 160.00 | 10.20 | 129.40 | 129.40 | 692.90 | 422.20 | 0.61 |
AI-3 | 256.80 | 173.10 | 13.40 | 6.80 | 130.40 | 580.40 | 568.80 | 0.98 |
AI-4 | 256.80 | 160.00 | 15.90 | 31.70 | 162.70 | 627.00 | 413.00 | 0.66 |
1 | 张运涛, 雷家军, 赵密珍, 等. 新中国果树科学研究70年——草莓[J]. 果树学报, 2019, 36(10): 1441-1452. |
ZHANG Y, LEI J, ZHAO M, et al. Fruit scientific research in New China in the past 70 years: Strawberry[J]. Journal of Fruit Science, 2019, 36(10): 1441-1452. | |
2 | 王晓立, 韩浩章, 苗昌云, 等. 草莓栽培现状与栽培方式概述[J]. 安徽农学通报, 2020, 26(10): 36-37, 116. |
WANG X, HAN H, MIAO C, et al. Research cultivation status and cultivation methods of Fragaria ananassa [J]. Anhui Agricultural Science Bulletin, 2020, 26(10): 36-37, 116. | |
3 | 舒锐, 焦健, 臧传江, 等. 我国草莓产业现状及发展建议[J]. 中国果菜, 2019, 39(1): 51-53. |
SHU R, JIAO J, ZANG C, et al. The current situation and development suggestions of strawberry industry in China[J]. China Fruit & Vegetable, 2019, 39(1): 51-53. | |
4 | LIN F, CHEN H, ZHUANG P. Intelligent greenhouse system based on remote sensing images and machine learning promotes the efficiency of agricultural economic growth[J]. Environmental Technology & Innovation, 2021: ID 101758. |
5 | XIAO J, CHUNG P, WU H, et al. Detection of strawberry diseases using a convolutional neural network[J]. Plants, 2020, 10(1): 31. |
6 | JIANG Q, WU G, TIAN C, et al. Hyperspectral imaging for early identification of strawberry leaves diseases with machine learning and spectral fingerprint features[J]. Infrared Physics & Technology, 2021, 118: ID103898. |
7 | MA L, GUO X, ZHAO S, et al. Algorithm of strawberry disease recognition based on deep convolutional neural network[J]. Cognitive Computing Solutions for Complexity Problems in Computational Social Systems, 2021: 1-10. |
8 | HE Z, KARKEE M, UPADHAYAY P. Detection of strawberries with varying maturity levels for robotic harvesting using YOLOv4[C]// 2021 ASABE Annual International Virtual Meeting, St. Joseph, Michigan: American Society of Agricultural and Biological Engineers, 2021: 1. |
9 | ZHANG Y, YU J, CHEN Y, et al. Real-time strawberry detection using deep neural networks on embedded system (rtsd-net): An edge AI application [J]. Computer and Electronics in Agriculture, 2022, 192: ID106586. |
10 | PARK S, KIM J W. Design and implementation of a hydroponic strawberry monitoring and harvesting timing information supporting system based on nano AI-Cloud and IoT-Edge[J]. Electronics, 2021, 10(12): ID 1400. |
11 | HEMMING S, DE ZWART F, ELINGS A, et al. Cherry tomato production in intelligent greenhouses—Sensors and AI for control of climate, irrigation, crop yield, and quality[J]. Sensors, 2020, 20(22): ID 6430. |
12 | HEMMING S, DE ZWART H F, ELINGS A, etal. Remote control of greenhouse vegetable production with artificial intelligence—Greenhouse climate, irrigation, and crop production[J]. Sensors, 2019, 19(8): ID 1807. |
13 | BUWALDA F, HENTEN E JVAN, DE GELDER A, et al. Toward an optimal control strategy for sweet pepper cultivation-1. a dynamic crop model[J]. Acta Hortic, 2006, 718: 367-374. |
14 | 林森, 郭文忠, 郑建锋, 等. 基于知识图谱和机器视觉的智慧草莓生产托管服务系统实践[J]. 农业工程技术, 2021, 41(4): 17-20. |
LIN S, GUO W, ZHENG J, et al. Practice of smart strawberry production hosting service system based on knowledge graph and machine vision[J]. Agricultural Engineering Technology, 2021, 41(4): 17-20. | |
15 | 张宇, 郭文忠, 林森, 等. 基于Neo4j的草莓种植管理知识图谱构建及验证[J]. 现代农业科技, 2022(1): 223-230. |
ZHANG Y, GUO W, LIN S, et al. Construction and verification of knowledge graph of strawberry planting management based on Neo4j[J]. Modern Agricultural Science and Technology, 2022(1): 223-230. | |
16 | 张宇, 赵春江, 林森, 等. 基于Penman-Monteith模型和路径排序算法相结合的草莓灌溉方法与验证[J]. 智慧农业(中英文), 2021, 3(3): 116-128. |
ZHANG Y, ZHAO C, LIN S, et al. Irrigation method and verification of strawberry based on Penman-Monteith model and path ranking algorithm [J]. Smart Agriculture, 2021, 3(3): 116-128. | |
17 | 龙洁花, 郭文忠, 林森, 等. 改进YOLOv4的温室环境下草莓生育期识别方法[J]. 智慧农业(中英文), 2021, 3(4): 99-110. |
LONG J, GUO W, LIN S, et al. Strawberry growth period recognition method under greenhouse environment based on improved YOLOv4[J]. Smart Agriculture, 2021, 3(4): 99-110. | |
18 | MARCELIS L F M, ELINGS A, DE VISSER PH B, et al. Simulating growth and development of tomato crop[J]. Acta Hortic, 2009, 821: 101-110. |
19 | MORIMOTO, T, HASHIMOTO Y. AI approaches to identification and control of total plant production systems[J]. Control Engineering Practice, 2000, 8: 555-567. |
20 | KROPFF M J, BASTIAANS L, GOUDRIAAN J. Implications of improvements in modeling canopy photosynthesis in SUCROS (a simple and universal crop growth simulator)[J]. Netherlands Journal of Agricultural Science, 1987, 35(2): 192-194. |
21 | AVAN DIEPEN C, WOLF J, HVAN KEULEN, et al. WOFOST: A simulation model of crop production[J]. Soil Use Manag, 1989, 5: 16-24. |
22 | 倪纪恒, 陈学好, 陈春宏, 等. 用辐热积法模拟温室黄瓜果实生长[J]. 农业工程学报, 2009, 25(5): 192-196. |
NI J, CHEN X, CHEN C, et al. Simulation of cucumber fruit growth in greenhouse based on production of thermal effectiveness and photosynthesis active radiation[J]. Transactions of the CSAE, 2009, 25(5): 192-196. | |
23 | 王丹丹, 吕振宁, 李坚, 等. 基于辐热积的日光温室不同茬次袋培番茄干物质模型比较[J]. 西北农业学报, 2018, 27(2): 238-243. |
WANG D, LV Z, LI J, et al. Comparison of dry matter partitioning model of tomato cultivated with growth-bag during different growing seasons based on product of thermal effectiveness and photosynthesis active radiation in solar greenhouse[J]. Acta Agriculture Boreali-occidentalis Sinica, 2018, 27(2): 238-243. | |
24 | RUAN J, WANG G, NING G, et al. Longer duration of short-day treatment is required to advance flowering and fruiting of decaploid strawberry 'Tokun' [J]. HortScience, 2020, 55(1): 30-34. |
25 | 李永秀, 罗卫红, 倪纪恒, 等. 用辐热积法模拟温室黄瓜叶面积、光合速率与干物质产量[J]. 农业工程学报, 2005(12): 131-136. |
LI Y, LUO W, NI J, et al. Simulation of leaf area, photosynthetic rate and dry matter production in greenhouse cucumber based on product of thermal effectiveness and photosynthetically active radiation[J]. Transactions of the CSAE, 2005(12): 131-136. | |
26 | 徐超, 王明田, 杨再强, 等. 苗期高温对草莓生育期的影响及其模拟[J]. 中国农业气象, 2020, 41(10): 644-654. |
XU C, WANG M, YANG Z, et al. Effect of high temperature in seedling stage on phenological stage of strawberry and its simulation[J]. Chinese Journal of Agrometeorology, 2020, 41(10): 644-654. | |
27 | 徐凌翔, 陈佳玮, 丁国辉, 等. 室内植物表型平台及性状鉴定研究进展和展望[J]. 智慧农业(中英文), 2020, 2(1): 23-42. |
XU L, CHEN J, DING G, et al. Indoor phenotyping platforms and associated trait measurement: Progress and prospects[J]. Smart Agriculture, 2020, 2(1): 23-42. | |
28 | 周济, TARDIEU F, PRIDMORE T, 等. 植物表型组学: 发展、现状与挑战[J]. 南京农业大学学报, 2018, 41(4): 580-588. |
ZHOU J, TARDIEU F, RIDMORE T, et al. Plant phenomics: History,present status and challenges[J]. Journal of Nanjing Agricultural University, 2018, 41(4): 580-588. |
[1] | ZHANG Fan, ZHOU Mengting, XIONG Benhai, YANG Zhengang, LIU Minze, FENG Wenxiao, TANG Xiangfang. Research Advances and Prospect of Intelligent Monitoring Systems for the Physiological Indicators of Beef Cattle [J]. Smart Agriculture, 2024, 6(4): 1-17. |
[2] | GUO Wang, YANG Yusen, WU Huarui, ZHU Huaji, MIAO Yisheng, GU Jingqiu. Big Models in Agriculture: Key Technologies, Application and Future Directions [J]. Smart Agriculture, 2024, 6(2): 1-13. |
[3] | FAN Jiangchuan, WANG Yuanqiao, GOU Wenbo, CAI Shuangze, GUO Xinyu, ZHAO Chunjiang. Fast Extracting Method for Strawberry Leaf Age and Canopy Width Based on Instance Segmentation Technology [J]. Smart Agriculture, 2024, 6(2): 95-106. |
[4] | MAO Kebiao, ZHANG Chenyang, SHI Jiancheng, WANG Xuming, GUO Zhonghua, LI Chunshu, DONG Lixin, WU Menxin, SUN Ruijing, WU Shengli, JI Dabin, JIANG Lingmei, ZHAO Tianjie, QIU Yubao, DU Yongming, XU Tongren. The Paradigm Theory and Judgment Conditions of Geophysical Parameter Retrieval Based on Artificial Intelligence [J]. Smart Agriculture, 2023, 5(2): 161-171. |
[5] | GUI Zechun, ZHAO Sijian. Research Application of Artificial Intelligence in Agricultural Risk Management: A Review [J]. Smart Agriculture, 2023, 5(1): 82-98. |
[6] | ZHAO Ruixue, YANG Chenxue, ZHENG Jianhua, LI Jiao, WANG Jian. Agricultural Intelligent Knowledge Service: Overview and Future Perspectives [J]. Smart Agriculture, 2022, 4(4): 105-125. |
[7] | WANG Hui, CHEN Ruipeng, YU Zhixue, HE Yue, ZHANG Fan, XIONG Benhai. Porphyrin and Semiconducting Single Wall Carbon Nanotubes based Semiconductor Field Effect Gas Sensor for Determination of Phytophthora Strawberries [J]. Smart Agriculture, 2022, 4(3): 143-151. |
[8] | LONG Jiehua, GUO Wenzhong, LIN Sen, WEN Chaowu, ZHANG Yu, ZHAO Chunjiang. Strawberry Growth Period Recognition Method Under Greenhouse Environment Based on Improved YOLOv4 [J]. Smart Agriculture, 2021, 3(4): 99-110. |
[9] | ZHANG Yu, ZHAO Chunjiang, LIN Sen, GUO Wenzhong, WEN Chaowu, LONG Jiehua. Irrigation Method and Verification of Strawberry Based on Penman-Monteith Model and Path Ranking Algorith [J]. Smart Agriculture, 2021, 3(3): 116-128. |
[10] | LI Daoliang, LIU Chang. Recent Advances and Future Outlook for Artificial Intelligence in Aquaculture [J]. Smart Agriculture, 2020, 2(3): 1-20. |
[11] | Zhao Chunjiang. State-of-the-art and recommended developmental strategic objectivs of smart agriculture [J]. Smart Agriculture, 2019, 1(1): 1-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||