Smart Agriculture ›› 2023, Vol. 5 ›› Issue (3): 121-131.doi: 10.12133/j.smartag.SA202308005
• Special Issue--Monitoring Technology of Crop Information • Previous Articles Next Articles
LI Jiahao1(), QU Hongjun1, GAO Mingzhe2, TONG Dezhi3, GUO Ya1,2,3(
)
Received:
2023-07-31
Online:
2023-09-30
Foundation items:
About author:
LI Jiahao, Email:ljh2285253876@163.com
corresponding author:
GUO Ya, E-mail:guoya68@163.com
LI Jiahao, QU Hongjun, GAO Mingzhe, TONG Dezhi, GUO Ya. A Multi-Focal Green Plant Image Fusion Method Based on Stationary Wavelet Transform and Parameter-Adaptation Dual Channel Pulse-Coupled Neural Network[J]. Smart Agriculture, 2023, 5(3): 121-131.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202308005
Table 1
Four sets of evaluation indicators for the fused images from the six algorithms
源图像 | 算法 | AG/(GL·Px-1) | SF/(LP·Px-1) | EN/(bit·Px-1) | SD/GL |
---|---|---|---|---|---|
第一组 | FGF | 2.78 | 10.25 | 6.52 | 81.57 |
RW | 2.72 | 9.88 | 6.51 | 81.50 | |
NSST-PCNN | 2.87 | 9.95 | 6.59 | 80.87 | |
NSST-PADC | 3.25 | 11.43 | 6.63 | 81.60 | |
SWT | 2.52 | 8.52 | 6.50 | 81.08 | |
PADC-PCNN-SWT | 2.98 | 10.32 | 6.57 | 81.52 | |
第二组 | FGF | 3.29 | 10.85 | 6.80 | 67.14 |
RW | 3.21 | 10.62 | 6.80 | 67.00 | |
NSST-PCNN | 3.19 | 9.89 | 6.83 | 66.14 | |
NSST-PADC | 3.67 | 11.83 | 6.89 | 67.12 | |
SWT | 2.92 | 9.22 | 6.79 | 66.42 | |
PADC-PCNN-SWT | 3.41 | 11.11 | 6.84 | 66.96 | |
第三组 | FGF | 3.21 | 10.59 | 6.64 | 53.33 |
RW | 3.14 | 10.57 | 6.64 | 53.20 | |
NSST-PCNN | 3.17 | 10.43 | 6.64 | 52.32 | |
NSST-PADC | 3.69 | 12.16 | 6.72 | 53.49 | |
SWT | 2.86 | 9.21 | 6.63 | 52.64 | |
PADC-PCNN-SWT | 3.38 | 10.97 | 6.68 | 53.22 | |
第四组 | FGF | 2.85 | 10.77 | 6.71 | 72.43 |
RW | 2.80 | 9.37 | 6.71 | 72.38 | |
NSST-PCNN | 2.81 | 9.02 | 6.75 | 71.33 | |
NSST-PADC | 3.28 | 10.77 | 6.79 | 72.44 | |
SWT | 2.58 | 8.33 | 6.70 | 71.98 | |
PADC-PCNN-SWT | 3.05 | 10.06 | 6.74 | 72.43 | |
第五组 | FGF | 2.93 | 11.62 | 6.57 | 70.36 |
RW | 2.87 | 11.63 | 6.57 | 70.30 | |
NSST-PCNN | 2.97 | 11.76 | 6.62 | 69.86 | |
NSST-PADC | 3.35 | 13.21 | 6.66 | 70.47 | |
SWT | 2.66 | 10.45 | 6.56 | 69.94 | |
PADC-PCNN-SWT | 3.09 | 12.04 | 6.61 | 70.41 | |
第六组 | FGF | 2.00 | 9.31 | 6.09 | 66.35 |
RW | 1.94 | 9.07 | 6.08 | 66.29 | |
NSST-PCNN | 1.98 | 8.86 | 6.06 | 65.90 | |
NSST-PADC | 2.27 | 10.11 | 6.17 | 66.34 | |
SWT | 1.78 | 8.12 | 6.06 | 66.01 | |
PADC-PCNN-SWT | 2.11 | 9.29 | 6.13 | 66.33 | |
第七组 | FGF | 4.07 | 14.88 | 7.19 | 76.94 |
RW | 4.06 | 15.09 | 7.19 | 76.86 | |
NSST-PCNN | 3.90 | 13.09 | 7.13 | 75.16 | |
NSST-PADC | 4.48 | 16.11 | 7.21 | 77.03 | |
SWT | 3.76 | 12.58 | 7.16 | 74.79 | |
PADC-PCNN-SWT | 3.97 | 13.06 | 7.17 | 75.65 | |
第八组 | FGF | 4.17 | 15.87 | 7.69 | 74.21 |
RW | 4.23 | 15.74 | 7.69 | 74.03 | |
NSST-PCNN | 4.35 | 15.58 | 7.66 | 74.53 | |
NSST-PADC | 4.43 | 16.11 | 7.69 | 74.94 | |
SWT | 3.69 | 14.37 | 7.68 | 72.89 | |
PADC-PCNN-SWT | 3.98 | 14.63 | 7.69 | 73.12 |
1 |
刘刚, 司永胜, 冯娟. 农林作物三维重建方法研究进展[J]. 农业机械学报, 2014, 45(6): 38-46, 19.
|
|
|
2 |
陆健强, 兰玉彬, 毋志云, 等. 植物三维建模ICP点云配准优化[J]. 农业工程学报, 2022, 38(2): 183-191.
|
|
|
3 |
李百明, 吴茜, 吴劼, 等. 基于多视角自动成像系统的作物三维点云重建策略优化[J]. 农业工程学报, 2023, 39(9): 161-171.
|
|
|
4 |
杨洪飞, 夏晖, 陈忻, 等. 图像融合在空间目标三维重建中的应用[J]. 红外与激光工程, 2018, 47(9): 374-381.
|
|
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
张丽霞, 曾广平, 宣兆成. 多源图像融合方法的研究综述[J]. 计算机工程与科学, 2022, 44(2): 321-334.
|
|
|
10 |
李娇, 杨艳春, 党建武, 等. NSST与引导滤波相结合的多聚焦图像融合算法[J]. 哈尔滨工业大学学报, 2018, 50(11): 145-152.
|
|
|
11 |
|
12 |
曾志勇, 刘光宇, 曹禹, 等. 结合PCNN和局部能量的NSST域声呐图像融合[J]. 西北大学学报(自然科学版), 2023, 53(2): 248-255.
|
|
|
13 |
|
14 |
龚循强, 侯昭阳, 吕开云, 等.结合改进Laplacian能量和参数自适应双通道ULPCNN的遥感影像融合方法[J/OL].测绘学报:1-15[2023-11-10].
|
|
|
15 |
邸敬, 尹世杰, 廉敬. 基于NSST的改进双通道PCNN多聚焦RGB图像融合[J]. 计算机应用研究, 2022, 39(1): 308-311, 315.
|
|
|
16 |
|
17 |
|
18 |
|
19 |
王昶, 郭东升. 基于离散平稳小波的影像恢复去噪方法[J]. 北京测绘, 2022, 36(11): 1557-1563.
|
|
|
20 |
孔玲君, 张志华, 曾茜, 等. 基于NSST和SWT的红外与可见光图像融合算法研究[J]. 包装工程, 2018, 39(19): 216-222.
|
|
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|
28 |
|
29 |
杨艳春, 李娇, 王阳萍. 图像融合质量评价方法研究综述[J]. 计算机科学与探索, 2018, 12(7): 1021-1035.
|
|
[1] | YAO Jianen, LIU Haiqiu, YANG Man, FENG Jinying, CHEN Xiu, ZHANG Peipei. Reconstruction of U.S. Regional-Scale Soybean SIF Based on MODIS Data and BP Neural Network [J]. Smart Agriculture, 2024, 6(5): 40-50. |
[2] | LIU Liqi, WEI Guangyuan, ZHOU Ping. Prediction and Mapping of Soil Total Nitrogen Using GF-5 Image Based on Machine Learning Optimization Modeling [J]. Smart Agriculture, 2024, 6(5): 61-73. |
[3] | LI Minghuang, SU Lide, ZHANG Yong, ZONG Zheying, ZHANG Shun. Automatic Measurement of Mongolian Horse Body Based on Improved YOLOv8n-pose and 3D Point Cloud Analysis [J]. Smart Agriculture, 2024, 6(4): 91-102. |
[4] | ZHANG Jun, CHEN Yuyan, QIN Zhenyu, ZHANG Mengyao, ZHANG Jun. Remote Sensing Extraction Method of Terraced Fields Based on Improved DeepLab v3+ [J]. Smart Agriculture, 2024, 6(3): 46-57. |
[5] | JIA Wenshen, LYU Haolin, ZHANG Shang, QIN Yingdong, ZHOU Wei. Using a Portable Visible-near Infrared Spectrometer and Machine Learning to Distinguish and Quantify Mold Contamination in Wheat [J]. Smart Agriculture, 2024, 6(1): 89-100. |
[6] | ZUO Min, HU Tianyu, DONG Wei, ZHANG Kexin, ZHANG Qingchuan. Forecast and Analysis of Agricultural Products Logistics Demand Based on Informer Neural Network: Take the Central China Aera as An Example [J]. Smart Agriculture, 2023, 5(1): 34-43. |
[7] | ZHANG Zhibo, ZHAO Xining, GAO Xiaodong, ZHANG Li, YANG Menghao. Accurate Extraction of Apple Orchard on the Loess Plateau Based on Improved Linknet Network [J]. Smart Agriculture, 2022, 4(3): 95-107. |
[8] | ZHOU Qiaoli, MA Li, CAO Liying, YU Helong. Identification of Tomato Leaf Diseases Based on Improved Lightweight Convolutional Neural Networks MobileNetV3 [J]. Smart Agriculture, 2022, 4(1): 47-56. |
[9] | SHAO Mingyue, ZHANG Jianhua, FENG Quan, CHAI Xiujuan, ZHANG Ning, ZHANG Wenrong. Research Progress of Deep Learning in Detection and Recognition of Plant Leaf Diseases [J]. Smart Agriculture, 2022, 4(1): 29-46. |
[10] | WANG Ying, LI Yue, WU Tingting, SUN Shi, WANG Minjuan. Fast Counting Method of Soybean Seeds Based on Density Estimation and VGG-Two [J]. Smart Agriculture, 2021, 3(4): 111-122. |
[11] | LI Dongbo, HUANG Lyuwen, ZHAO Xubo. Detection Method of Apple Mould Core Based on Dielectric Characteristics [J]. Smart Agriculture, 2021, 3(4): 66-76. |
[12] | LI Zhijun, YANG Shenghui, SHI Deshuai, LIU Xingxing, ZHENG Yongjun. Yield Estimation Method of Apple Tree Based on Improved Lightweight YOLOv5 [J]. Smart Agriculture, 2021, 3(2): 100-114. |
[13] | YIN Hang, LI Xiangtong, XU Longqin, LI Jingbin, LIU Shuangyin, CAO Liang, FENG Dachun, GUO Jianjun, LI Liqiao. EMD-RF-LSTM: Combination Prediction Model of Dissolved Oxygen Concentration in Prawn Culture [J]. Smart Agriculture, 2021, 3(2): 115-125. |
[14] | LI Yan, SHEN Jie, XIE Hang, GAO Guangyin, LIU Jianxiong, LIU Jie. Detection and Grading Method of Pomelo Shape Based on Contour Coordinate Transformation and Fitting [J]. Smart Agriculture, 2021, 3(1): 86-95. |
[15] | QIU Wenjie, YE Jin, HU Liangqing, YANG Juan, LI Qili, MO Jianyou, YI Wanmao. Distilled-MobileNet Model of Convolutional Neural Network Simplified Structure for Plant Disease Recognition [J]. Smart Agriculture, 2021, 3(1): 109-117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||