1 | 张伟锋, 刘新娇, 李秋枫, 等. 世界玉米生产与贸易概况分析[J]. 世界农业, 2014(3): 111-114. | 1 | ZHANG W, LIU X, LI Q, et al. General situation analysis of world corn production and trade[J]. World Agriculture, 2014(3): 111-114. | 2 | WU Y, LI X, MAO E, et al. Design and development of monitoring device for corn grain cleaning loss based on piezoelectric effect[J]. Computers and Electronics in Agriculture, 2020, 179(12): ID 105793. | 3 | XU L, WEI C, LIANG Z, et al. Development of rapeseed cleaning loss monitoring system and experiments in a combine harvester[J]. Biosystems Engineering, 2019, 178: 118-130. | 4 | VALIENTE-GONZáLEZJM, ANDREU-GARCíAG, POTTER P, et al. Automatic corn (Zea mays) kernel inspection system using novelty detection based on principal component analysis[J]. Biosystems Engineering, 2014, 117: 94-103. | 5 | ORLANDI G, CALVINI R, FOCA G, et al. Automated quantification of defective maize kernels by means of multivariate image analysis[J]. Food Control, 2018, 85: 259-268. | 6 | LI X, DAI B, HONG S, et al. Corn classification system based on computer vision[J]. Symmetry, 2019, 11(4): 591-591. | 7 | 张恬, 赵德安, 周童. 图像处理在联合收割机夹带损失检测中的应用[J]. 农机化研究, 2009, 31(4): 70-72. | 7 | ZHANG T, ZHAO D, ZHOU T. Application of image processing on combine harvester attachment loss[J]. Journal of Agricultural Mechanization Research, 2009, 31(4): 70-72. | 8 | 辛博, 吴涛, 陈春林, 等. 一种基于图像处理的谷物收割清选损失实时在线检测方法: CN107123115A[P]. 2017-09-01. | 8 | XIN B, WU T, CHEN C, et al. A real-time online detection method for grain harvesting and cleaning loss based on image processing: CN107123115A[P]. 2017-09-01. | 9 | WELLINGTON C K, BRUNS A J, SIERRA V S, et al. Grain quality monitoring: US10664726B2[P]. 2017-10-02. | 10 | 孙红, 李松, 李民赞, 等. 农业信息成像感知与深度学习应用研究进展[J]. 农业机械学报, 2020, 51(5): 1-17. | 10 | SUN H, LI S, LI M, et al. Research progress of image sensing and deep learning in agriculture[J]. Transactions of the CSAM, 2020, 51(5): 1-17. | 11 | MONHOLLEN N S, SHINNERS K J, FRIEDE J C, et al. In-field machine vision system for identifying corn kernel losses[J]. Computers and Electronics in Agriculture, 2020, 174: ID 105496. | 12 | 吕璐, 程虎, 朱鸿泰, 等. 基于深度学习的目标检测研究与应用综述[J]. 电子与封装, 2022, 22(1): 72-80. | 12 | LYU L, CHENG H, ZHU H, et al. Progress of research and application of object detection based on deep learning[J]. Electronics & Packaging, 2022, 22(1): 72-80. | 13 | 董丽君, 曾志高, 易胜秋, 等. 基于YOLOv5的遥感图像目标检测[J]. 湖南工业大学学报, 2022, 36(3): 44-50. | 13 | DONG L, ZENG Z, YI S, et al. Research on a YOLOv5-Based remote sensing image target detection[J]. Journal of Hunan University of Technology, 2022, 36(3): 44-50. | 14 | 谢富, 朱定局. 深度学习目标检测方法综述[J]. 计算机系统应用, 2022, 31(2): 1-12. | 14 | XIE F, ZHU D. Survey on deep learning object detection[J]. Computer Systems & Applications, 2022, 31(2): 1-12. | 15 | 寇大磊, 权冀川, 张仲伟. 基于深度学习的目标检测框架进展研究[J]. 计算机工程与应用, 2019, 55(11): 25-34. | 15 | KOU D, QUAN J, ZHANG Z. Research on progress of object detection framework based on deep learning[J]. Computer Engineering and Applications, 2019, 55(11): 25-34. | 16 | 包晓敏, 王思琪. 基于深度学习的目标检测算法综述[J]. 传感器与微系统, 2022, 41(4): 5-9. | 16 | BAO X, WANG S. Survey of object detection algorithm based on deep learning[J]. Transducer and Microsystem Technologies, 2022, 41(4): 5-9. | 17 | HE K, GKIOXARI G, DOLLáR P, et al. Mask r-cnn[C]// The IEEE International Conference on Computer Vision. Piscataway, New York, USA: IEEE, 2017: 2961-2969. | 18 | TAN M, PANG R, LE Q. Efficientdet: Scalable and efficient object detection[C]// The IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2020: 10781-10790. | 19 | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J/OL]. arXiv:2004.10934[cs.CV], 2020. | 20 | GE Z, LIU S, WANG F, et al. YOLOx: Exceeding yolo series in 2021[J/OL]. arXiv:, 2021. |
|