1 |
武珍珍, 洪沙沙, 吕虹瑞, 等. 黄花菜保鲜贮藏及后处理加工技术研究进展[J]. 食品与发酵工业, 2023, 49(22): 334-340.
|
|
WU Z Z, HONG S S, LYU H R, et al. Research progress in fresh-keeping, storage and post-processing technology of daylily[J]. Food and fermentation industries, 2023, 49(22): 334-340.
|
2 |
王思丽, 张伶, 杨恒, 等. 深度学习语言模型的研究综述[J]. 农业图书情报学报, 2023, 35(8): 4-18.
|
|
WANG S L, ZHANG L, YANG H, et al. Review of deep learning for language modeling[J]. Journal of library and information science in agriculture, 2023, 35(8): 4-18.
|
3 |
蔡静敏. 基于深度学习的苹果外观无损检测系统研究与实现[D]. 呼和浩特: 内蒙古农业大学, 2020.
|
|
CAI J M. Research and implementation of apple appearance nondestructive inspection system based on deep learning[D]. Hohhot: Inner Mongolia Agricultural University, 2020.
|
4 |
WANG P, NIU T, HE D J. Tomato young fruits detection method under near color background based on improved faster R-CNN with attention mechanism[J]. Agriculture, 2021, 11(11): ID 1059.
|
5 |
WANG L H, SHI W P, TANG Y H, et al. Transfer learning-based lightweight SSD model for detection of pests in citrus[J]. Agronomy, 2023, 13(7): ID 1710.
|
6 |
DING X, LI Q, WANG X, et al. Apple detection algorithm based on an improved SSD [J]. The Journal of the institute of internet, broadcasting and communication, 2021, 21(3): 81-89.
|
7 |
姚涛, 谈志鹏, 程娥, 等. 基于改进YOLOv7-seg的黄花菜检测与分割方法[J]. 农业工程学报, 2024, 40(9): 146-153.
|
|
YAO T, TAN Z P, CHENG E, et al. Method for daylily detection and segmentation based on improved YOLOv7-seg[J]. Transactions of the Chinese society of agricultural engineering, 2024, 40(9): 146-153.
|
8 |
吴利刚, 吕媛媛, 周倩, 等. 基于改进YOLOv5的轻量级黄花成熟检测方法[J]. 中国农机化学报, 2024, 45(7): 235-242, 268.
|
|
WU L G, LYU Y Y, ZHOU Q, et al. Lightweight method for maturity detection of Hemerocallis citrina Baroni based on improved YOLOv5[J]. Journal of Chinese agricultural mechanization, 2024, 45(7): 235-242, 268.
|
9 |
MENGHANI G. Efficient deep learning: A survey on making deep learning models smaller, faster, and better[J]. ACM computing surveys, 2023, 55(12): 1-37.
|
10 |
LIU C, WANG K G, LI Q, et al. Powerful-IoU: More straightforward and faster bounding box regression loss with a nonmonotonic focusing mechanism[J]. Neural networks, 2024, 170: 276-284.
|
11 |
地理标志产品 庆阳黄花菜: DB62/T 4487—2021 [S]. 兰州: 甘肃省市场监督管理局, 2021.
|
12 |
NY/T 4333—2023. 脱水黄花菜加工技术规范 [S]. 北京: 中华人民共和国农业农村部, 2023.
|
13 |
CHEN J Q, MA A Q, HUANG L X, et al. GA-YOLO: A lightweight YOLO model for dense and occluded grape target detection[J]. Horticulturae, 2023, 9(4): ID 443.
|
14 |
WANG A, CHEN H, LIU L H, et al. YOLOv10: Real-time end-to-end object detection[EB/OL]. arXiv: 2405.14458, 2024.
|
15 |
CHEN H, WANG Y, GUO J, et al. Vanillanet: The power of minimalism in deep learning[EB/OL]. arXiv:2305.12972, 2023, 36.
|
16 |
ZHANG X, SONG Y, SONG T, et al. AKConv: Convolutional kernel with arbitrary sampled shapes and arbitrary number of parameters[EB/OL]. arXiv: 2311.11587, 2023.
|
17 |
QI Y L, HE Y T, QI X M, et al. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation[C]// 2023 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2023: 6070-6079.
|
18 |
ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[J]. Proceedings of the AAAI conference on artificial intelligence, 2020, 34(7): 12993-13000.
|
19 |
WANG C Y, YEH I H, LIAO H Y M. YOLOv9: Learning what you want to learn using programmable gradient information[EB/OL]. arXiv: 2402.13616, 2024.
|
20 |
VASU P K A, GABRIEL J, ZHU J, et al. MobileOne: An improved one millisecond mobile backbone[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2023.
|
21 |
MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: Practical guidelines for efficient CNN architecture design[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018: 122-138.
|
22 |
HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2019.
|