Smart Agriculture ›› 2025, Vol. 7 ›› Issue (4): 71-83.doi: 10.12133/j.smartag.SA202505012
• Topic--Intelligent Sensing and Grading of Agricultural Product Quality • Previous Articles Next Articles
HU Yan1, WANG Yujie1, ZHANG Xuechen1, ZHANG Yiqiang1, YU Huahao1, SONG Xinbei1, YE Sitan1, ZHOU Jihong2, CHEN Zhenlin3, ZONG Weiwei3, HE Yong1, LI Xiaoli1()
Received:
2025-05-13
Online:
2025-07-30
Foundation items:
The National Natural Science Foundation of China(32171889); The Earmarked Fund for CARS(CARS-19-02A); The Key R&D Projects in Zhejiang Province(2022C02044,2023C02043,2023C02009)
About author:
HU Yan, E-mail: hyan@zju.edu.cn
corresponding author:
CLC Number:
HU Yan, WANG Yujie, ZHANG Xuechen, ZHANG Yiqiang, YU Huahao, SONG Xinbei, YE Sitan, ZHOU Jihong, CHEN Zhenlin, ZONG Weiwei, HE Yong, LI Xiaoli. Non-Destructive Inspection and Intelligent Grading Method of Fu Brick Tea at Fungal Fermentation Stage Based on Hyperspectral Imaging Technology[J]. Smart Agriculture, 2025, 7(4): 71-83.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202505012
Table 1
Quantitative prediction of moisture, free amino acids, tea polyphenols and (TF+TR)/TB of Fu brick tea at different stages of fungal fermentation
指标 | 模型 | 数据类型 | RMSEC/% | R 2c | RMSEV/% | R 2v | RMSEP /% | R 2p |
---|---|---|---|---|---|---|---|---|
含水率 | SVM | VISNIR | 2.075 0 | 0.833 0 | 2.381 5 | 0.751 3 | 2.413 3 | 0.766 1 |
NIR | 3.482 2 | 0.530 1 | 3.945 2 | 0.435 5 | 3.895 5 | 0.427 1 | ||
CNN | VISNIR | 2.419 8 | 0.764 8 | 2.645 2 | 0.756 4 | 2.539 6 | 0.762 2 | |
NIR | 3.530 3 | 0.499 3 | 3.764 5 | 0.467 8 | 3.805 8 | 0.465 9 | ||
Spectra-SE-CNN | VISNIR | 2.416 8 | 0.865 4 | 2.137 4 | 0.836 4 | 2.553 9 | 0.859 5 | |
NIR | 3.436 3 | 0.625 6 | 3.891 2 | 0.535 3 | 3.916 9 | 0.534 2 | ||
游离氨基酸 | SVM | VISNIR | 0.232 7 | 0.495 5 | 0.191 5 | 0.656 4 | 0.194 7 | 0.659 6 |
NIR | 0.285 1 | 0.353 8 | 0.287 8 | 0.167 8 | 0.269 7 | 0.122 2 | ||
CNN | VISNIR | 0.262 2 | 0.565 9 | 0.368 7 | 0.556 1 | 0.358 9 | 0.542 3 | |
NIR | 0.350 3 | 0.582 2 | 0.489 7 | 0.413 4 | 0.407 0 | 0.411 6 | ||
Spectra-SE-CNN | VISNIR | 0.293 2 | 0.685 4 | 0.356 1 | 0.678 6 | 0.309 8 | 0.662 8 | |
NIR | 0.343 2 | 0.663 9 | 0.345 6 | 0.687 4 | 0.346 8 | 0.670 2 | ||
茶多酚 | SVM | VISNIR | 2.062 6 | 0.835 2 | 2.564 5 | 0.764 1 | 2.562 6 | 0.732 1 |
NIR | 3.506 1 | 0.533 3 | 3.943 1 | 0.445 2 | 3.905 2 | 0.399 4 | ||
CNN | VISNIR | 0.274 2 | 0.744 1 | 0.389 8 | 0.567 4 | 0.352 5 | 0.558 6 | |
NIR | 0.333 7 | 0.620 8 | 0.334 5 | 0.456 4 | 0.371 1 | 0.510 8 | ||
Spectra-SE-CNN | VISNIR | 0.269 6 | 0.852 5 | 0.378 9 | 0.827 6 | 0.360 5 | 0.838 3 | |
NIR | 0.340 9 | 0.664 5 | 0.387 1 | 0.675 3 | 0.393 9 | 0.648 8 | ||
茶三素 | SVM | VISNIR | 0.192 8 | 0.826 2 | 0.156 4 | 0.843 1 | 0.158 6 | 0.858 1 |
NIR | 0.233 0 | 0.764 2 | 0.183 1 | 0.734 5 | 0.188 6 | 0.748 8 | ||
CNN | VISNIR | 0.283 1 | 0.494 7 | 0.410 2 | 0.464 1 | 0.394 0 | 0.465 0 | |
NIR | 0.259 3 | 0.576 2 | 0.345 7 | 0.563 2 | 0.349 5 | 0.579 1 | ||
Spectra-SE-CNN | VISNIR | 2.399 9 | 0.868 6 | 2.610 1 | 0.846 8 | 2.590 9 | 0.852 5 | |
NIR | 3.573 2 | 0.787 1 | 3.467 1 | 0.719 9 | 3.932 2 | 0.729 8 |
Table 2
Classification prediction results of Fu brick tea at different stages of fungal fermentation.
模型 | SVM | CNN | Spectra-SE-CNN | ||||
---|---|---|---|---|---|---|---|
数据类型 | VIS-NIR | NIR | VIS-NIR | NIR | VIS-NIR | NIR | |
训练集 | 准确率/% | 89.41 | 56.66 | 94.20 | 88.75 | 100.00 | 100.00 |
精确率/% | 90.00 | 57.00 | 95.90 | 88.04 | 100.00 | 100.00 | |
召回率/% | 89.00 | 57.00 | 94.20 | 88.75 | 100.00 | 100.00 | |
F 1值/% | 89.00 | 57.00 | 94.27 | 87.09 | 100.00 | 100.00 | |
验证集 | 准确率/% | 83.45 | 55.46 | 93.89 | 86.56 | 100.00 | 100.00 |
精确率/% | 83.20 | 53.80 | 95.00 | 88.00 | 100.00 | 100.00 | |
召回率/% | 85.00 | 58.50 | 92.00 | 85.50 | 100.00 | 100.00 | |
F 1值/% | 84.10 | 56.00 | 93.00 | 86.25 | 100.00 | 100.00 | |
测试集 | 准确率/% | 84.41 | 56.48 | 94.94 | 87.86 | 100.00 | 100.00 |
精确率/% | 84.00 | 56.00 | 96.00 | 89.39 | 100.00 | 100.00 | |
召回率/% | 84.00 | 56.00 | 94.64 | 87.86 | 100.00 | 100.00 | |
F 1值/% | 84.00 | 56.00 | 94.64 | 85.99 | 100.00 | 100.00 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
邵元元, 李劲峰, 李霞, 等. 桑叶茯砖茶等3种砖茶的感官审评及理化指标分析[J]. 中国蚕业, 2022, 43(4): 20-25.
|
|
|
[8] |
刘晓, 唐晓波, 熊元元, 等. 四川黑茶品质分析及风味轮的构建[J]. 中国农学通报, 2024, 40(27): 134-143.
|
|
|
[9] |
刘兰, 周培华, 宋阳, 等. 安化茯砖茶中金花菌的筛选鉴定及发酵培养[J]. 食品安全质量检测学报, 2021, 12(13): 5375-5379.
|
|
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
秦俊哲, 刘凯利, 黄亚亚, 等. 茯砖茶人工控制发花过程主要功效成分的检测与分析[J]. 食品科技, 2016, 41(12): 273-276.
|
|
|
[25] |
|
[1] | YU Xinyuan, WANG Zhenjie, YOU Sicong, TU Kang, LAN Weijie, PENG Jing, ZHU Lixia, CHEN Tao, PAN Leiqing. Non-destructive Detection of Apple Water Core Disease Based on Hyperspectral and X-ray CT Imaging [J]. Smart Agriculture, 2025, 7(4): 108-118. |
[2] | LI Ruijie, WANG Aidong, WU Huaxing, LI Ziqiu, FENG Xiangqian, HONG Weiyuan, TANG Xuejun, QIN Jinhua, WANG Danying, CHU Guang, ZHANG Yunbo, CHEN Song. Remote Sensing for Rice Growth Stages Monitoring: Research Progress, Bottleneck Problems and Technical Optimization Paths [J]. Smart Agriculture, 2025, 7(3): 89-107. |
[3] | HAN Yu, QI Kangkang, ZHENG Jiye, LI Jinai, JIANG Fugui, ZHANG Xianglun, YOU Wei, ZHANG Xia. Lightweight Cattle Facial Recognition Method Based on Improved YOLOv11 [J]. Smart Agriculture, 2025, 7(3): 173-184. |
[4] | MA Liu, MAO Kebiao, GUO Zhonghua. Defogging Remote Sensing Images Method Based on a Hybrid Attention-Based Generative Adversarial Network [J]. Smart Agriculture, 2025, 7(2): 172-182. |
[5] | XU Shiwei, LI Qianchuan, LUAN Rupeng, ZHUANG Jiayu, LIU Jiajia, XIONG Lu. Agricultural Market Monitoring and Early Warning: An Integrated Forecasting Approach Based on Deep Learning [J]. Smart Agriculture, 2025, 7(1): 57-69. |
[6] | GONG Yu, WANG Ling, ZHAO Rongqiang, YOU Haibo, ZHOU Mo, LIU Jie. Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data [J]. Smart Agriculture, 2025, 7(1): 97-110. |
[7] | QI Zijun, NIU Dangdang, WU Huarui, ZHANG Lilin, WANG Lunfeng, ZHANG Hongming. Chinese Kiwifruit Text Named Entity Recognition Method Based on Dual-Dimensional Information and Pruning [J]. Smart Agriculture, 2025, 7(1): 44-56. |
[8] | ZHANG Hui, HU Jun, SHI Hang, LIU Changxi, WU Miao. Precision Target Spraying System Integrated with Remote Deep Learning Recognition Model for Cabbage Plant Centers [J]. Smart Agriculture, 2024, 6(6): 85-95. |
[9] | LU Bibo, LIANG Di, YANG Jie, SONG Aiqing, HUANGFU Shangwei. Image Segmentation Method of Chinese Yam Leaves in Complex Background Based on Improved ENet [J]. Smart Agriculture, 2024, 6(6): 109-120. |
[10] | LIU Liqi, WEI Guangyuan, ZHOU Ping. Prediction and Mapping of Soil Total Nitrogen Using GF-5 Image Based on Machine Learning Optimization Modeling [J]. Smart Agriculture, 2024, 6(5): 61-73. |
[11] | LUO Youlu, PAN Yonghao, XIA Shunxing, TAO Youzhi. Lightweight Apple Leaf Disease Detection Algorithm Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(5): 128-138. |
[12] | LIU Yi, ZHANG Yanjun. ReluformerN: Lightweight High-Low Frequency Enhanced for Hyperspectral Agricultural Lancover Classification [J]. Smart Agriculture, 2024, 6(5): 74-87. |
[13] | NIAN Yue, ZHAO Kaixuan, JI Jiangtao. Cow Hoof Slippage Detecting Method Based on Enhanced DeepLabCut Model [J]. Smart Agriculture, 2024, 6(5): 153-163. |
[14] | ZHANG Yanqi, ZHOU Shuo, ZHANG Ning, CHAI Xiujuan, SUN Tan. A Regional Farming Pig Counting System Based on Improved Instance Segmentation Algorithm [J]. Smart Agriculture, 2024, 6(4): 53-63. |
[15] | WENG Zhi, FAN Qi, ZHENG Zhiqiang. Automatic Measurement Method of Beef Cattle Body Size Based on Multimodal Image Information and Improved Instance Segmentation Network [J]. Smart Agriculture, 2024, 6(4): 64-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||