XU Jinchai1,2,3, LI Xiaoli4, WENG Haiyong1,2,3, HE Yong4, ZHU Xuesong5, LIU Hongfei6, HUANG Zhenxiong1,2,3(), YE Dapeng1,2,3
Received:
2025-05-30
Online:
2025-07-22
Foundation items:
National Natural Science Foundation of China (General Program)(31771676); Open Fund Project of Fujian Provincial University Key Laboratory of Agricultural Machinery Intelligent Control and Manufacturing Technology (Wuyi University)(AMICM202402)
About author:
XU Jinchai, E-mail: xjc@fafu.edu.cn
corresponding author:
CLC Number:
XU Jinchai, LI Xiaoli, WENG Haiyong, HE Yong, ZHU Xuesong, LIU Hongfei, HUANG Zhenxiong, YE Dapeng. Rapid Detection of Tea Polyphenols in Fresh Tea Leaves Using Visible/Shortwave and Longwave Near-Infrared Spectroscopy[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202505034.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202505034
Table 1
Comparison of performance between single-sensor and multi-source data fusion models for tea variety and leaf position identification
类别 | 识别模型 | 输入变量 | 变量数 | 训练集 | 预测集 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
准确率/% | 精确率% | 召回率/% | F 1分数 | 准确率/% | 精确率% | 召回率/% | F 1分数 | ||||
3个品种 | PLS-DA | 可见/短波近红外 | 651 | 100.00 | 100.00 | 100.00 | 1.000 0 | 100.00 | 100.00 | 100.00 | 1.000 0 |
长波近红外 | 600 | 87.83 | 87.94 | 88.17 | 0.879 9 | 94.83 | 94.11 | 93.70 | 0.938 5 | ||
数据级数据融合 | 1 251 | 100.00 | 100.00 | 100.00 | 1.000 0 | 100.00 | 100.00 | 100.00 | 1.000 0 | ||
特征级数据融合 | 171 | 99.13 | 99.12 | 99.10 | 0.991 1 | 100.00 | 100.00 | 100.00 | 1.000 0 | ||
LS-SVM | 可见/短波近红外 | 651 | 99.57 | 99.55 | 99.55 | 0.995 5 | 100.00 | 100.00 | 100.00 | 1.000 0 | |
长波近红外 | 600 | 96.52 | 96.66 | 96.60 | 0.966 1 | 100.00 | 100.00 | 100.00 | 1.000 0 | ||
数据级数据融合 | 1 251 | 99.57 | 99.58 | 99.54 | 0.995 6 | 100.00 | 100.00 | 100.00 | 1.000 0 | ||
特征级数据融合 | 171 | 98.26 | 98.29 | 98.22 | 0.982 1 | 100.00 | 100.00 | 100.00 | 1.000 0 | ||
RF | 可见/短波近红外 | 651 | 100.00 | 100.00 | 100.00 | 1.000 0 | 100.00 | 100.00 | 100.00 | 1.000 0 | |
长波近红外 | 600 | 100.00 | 100.00 | 100.00 | 1.000 0 | 98.28 | 98.15 | 97.92 | 0.980 3 | ||
数据级数据融合 | 1 251 | 100.00 | 100.00 | 100.00 | 1.000 0 | 100.00 | 100.00 | 100.00 | 1.000 0 | ||
特征级数据融合 | 171 | 100.00 | 100.00 | 100.00 | 1.000 0 | 100.00 | 100.00 | 100.00 | 1.000 0 | ||
ELM | 可见/短波近红外 | 651 | 100.00 | 100.00 | 100.00 | 1.000 0 | 100.00 | 100.00 | 100.00 | 1.000 0 | |
长波近红外 | 600 | 100.00 | 100.00 | 100.00 | 1.000 0 | 100.00 | 100.00 | 100.00 | 1.000 0 | ||
数据级数据融合 | 1 251 | 100.00 | 100.00 | 100.00 | 1.000 0 | 100.00 | 100.00 | 100.00 | 1.000 0 | ||
特征级数据融合 | 171 | 98.70 | 98.69 | 98.69 | 0.986 9 | 100.00 | 100.00 | 100.00 | 1.000 0 | ||
1D-CNN | 可见/短波近红外 | 651 | 100.00 | 100.00 | 100.00 | 1.000 0 | 100.00 | 100.00 | 100.00 | 1.000 0 | |
长波近红外 | 600 | 93.91 | 93.99 | 94.02 | 0.939 8 | 98.28 | 98.15 | 97.92 | 0.979 7 | ||
数据级数据融合 | 1 251 | 100.00 | 100.00 | 100.00 | 1.000 0 | 100.00 | 100.00 | 100.00 | 1.000 0 | ||
特征级数据融合 | 171 | 100.00 | 100.00 | 100.00 | 1.000 0 | 100.00 | 100.00 | 100.00 | 1.000 0 | ||
4个叶位 | PLS-DA | 可见/短波近红外 | 651 | 90.87 | 91.24 | 90.93 | 0.909 8 | 79.31 | 82.39 | 79.76 | 0.804 2 |
长波近红外 | 600 | 64.35 | 64.92 | 64.39 | 0.644 8 | 68.97 | 69.02 | 69.74 | 0.689 7 | ||
数据级数据融合 | 1 251 | 94.35 | 94.45 | 94.40 | 0.943 9 | 84.48 | 86.06 | 86.87 | 0.858 2 | ||
特征级数据融合 | 90 | 85.65 | 85.45 | 85.23 | 0.853 2 | 87.93 | 91.18 | 88.51 | 0.889 3 | ||
LS-SVM | 可见/短波近红外 | 651 | 73.91 | 74.08 | 74.31 | 0.734 1 | 58.62 | 58.41 | 61.62 | 0.577 0 | |
长波近红外 | 600 | 56.09 | 56.00 | 56.57 | 0.560 9 | 58.62 | 58.86 | 59.93 | 0.592 1 | ||
数据级数据融合 | 1 251 | 80.87 | 81.00 | 81.33 | 0.805 2 | 74.14 | 73.42 | 72.00 | 0.722 7 | ||
特征级数据融合 | 90 | 96.52 | 96.38 | 96.46 | 0.964 1 | 79.31 | 81.55 | 78.57 | 0.789 3 | ||
RF | 可见/短波近红外 | 651 | 96.52 | 96.52 | 96.56 | 0.965 4 | 74.14 | 72.92 | 72.79 | 0.728 5 | |
长波近红外 | 600 | 97.83 | 97.84 | 97.82 | 0.978 3 | 75.86 | 75.86 | 76.94 | 0.764 0 | ||
数据级数据融合 | 1 251 | 100.00 | 100.00 | 100.00 | 1.000 0 | 79.31 | 79.49 | 78.73 | 0.791 1 | ||
特征级数据融合 | 90 | 79.57 | 79.27 | 79.69 | 0.794 8 | 77.59 | 80.71 | 78.78 | 0.797 4 | ||
ELM | 可见/短波近红外 | 651 | 95.22 | 95.24 | 95.48 | 0.953 6 | 75.86 | 75.45 | 76.43 | 0.759 3 | |
长波近红外 | 600 | 65.65 | 65.57 | 65.07 | 0.653 2 | 67.24 | 68.20 | 71.36 | 0.697 5 | ||
数据级数据融合 | 1 251 | 79.57 | 79.49 | 79.43 | 0.794 6 | 79.31 | 80.33 | 78.99 | 0.796 5 | ||
特征级数据融合 | 90 | 86.09 | 85.64 | 85.97 | 0.858 1 | 74.14 | 79.29 | 76.95 | 0.781 0 | ||
1D-CNN | 可见/短波近红外 | 651 | 79.57 | 79.64 | 79.47 | 0.794 5 | 68.97 | 68.23 | 69.10 | 0.684 6 | |
长波近红外 | 600 | 62.17 | 62.29 | 63.57 | 0.630 0 | 63.79 | 63.29 | 64.64 | 0.638 2 | ||
数据级数据融合 | 1 251 | 87.83 | 87.96 | 88.28 | 0.876 2 | 74.14 | 75.09 | 73.62 | 0.735 8 | ||
特征级数据融合 | 90 | 97.39 | 97.37 | 97.34 | 0.973 3 | 82.76 | 84.32 | 86.06 | 0.842 1 |
Table 2
Statistical characteristics of tea polyphenol contents in fresh tea leaves
输入变量 | 数据集 | 样本数/个 | 最小值/% | 最大值/% | 平均值/% | 标准差/% | 变异系数/% | 偏度 | 峰度 |
---|---|---|---|---|---|---|---|---|---|
可见/短波近红外(400~1 050 nm) | 全集 | 276 | 12.71 | 20.60 | 16.41 | 1.60 | 9.80 | 0.019 | -0.450 |
训练集 | 221 | 12.71 | 20.60 | 16.44 | 1.62 | 9.86 | 0.036 | -0.472 | |
预测集 | 55 | 13.13 | 19.58 | 16.25 | 1.55 | 9.59 | -0.089 | -0.352 | |
长波近红外 (1 051~1 650 nm) | 全集 | 276 | 12.71 | 20.60 | 16.41 | 1.60 | 9.80 | 0.019 | -0.450 |
训练集 | 221 | 12.71 | 20.60 | 16.47 | 1.67 | 10.17 | 0.020 | -0.571 | |
预测集 | 55 | 13.18 | 18.36 | 16.16 | 1.28 | 7.97 | -0.402 | -0.273 | |
数据级数据融合 | 全集 | 276 | 12.71 | 20.60 | 16.41 | 1.60 | 9.80 | 0.019 | -0.450 |
训练集 | 221 | 12.71 | 20.60 | 16.48 | 1.64 | 9.95 | 0.037 | -0.472 | |
预测集 | 55 | 13.18 | 18.72 | 16.09 | 1.44 | 8.97 | -0.288 | -0.748 | |
特征级数据融合 | 全集 | 276 | 12.71 | 20.60 | 16.41 | 1.60 | 9.80 | 0.019 | -0.450 |
训练集 | 221 | 12.71 | 20.60 | 16.51 | 1.62 | 9.82 | 0.064 | -0.484 | |
预测集 | 55 | 13.13 | 18.29 | 15.98 | 1.49 | 9.34 | -0.372 | -0.855 |
Table 3
Performance comparison of tea polyphenol content prediction models based on single sensors and multi-source data fusion
定量模型 | 输入变量 | 变量数/个 | R 2 C | RMSEC/% | R 2 P | RMSEP/% | RPD |
---|---|---|---|---|---|---|---|
PLSR | 可见/短波近红外 | 651 | 0.729 5 | 0.841 5 | 0.787 2 | 0.712 3 | 2.167 8 |
长波近红外 | 600 | 0.461 4 | 1.227 0 | 0.465 6 | 0.933 1 | 1.368 0 | |
数据级数据融合 | 1 251 | 0.743 7 | 0.828 5 | 0.789 2 | 0.657 0 | 2.178 5 | |
特征级数据融合 | 106 | 0.700 1 | 0.886 2 | 0.770 2 | 0.708 9 | 2.086 3 | |
LS-SVR | 可见/短波近红外 | 651 | 0.650 4 | 0.956 7 | 0.738 3 | 0.789 8 | 1.955 0 |
长波近红外 | 600 | 0.550 4 | 1.121 0 | 0.587 0 | 0.820 3 | 1.556 1 | |
数据级数据融合 | 1 251 | 0.741 2 | 0.832 5 | 0.751 3 | 0.713 7 | 2.005 5 | |
特征级数据融合 | 106 | 0.755 7 | 0.799 9 | 0.743 6 | 0.748 7 | 1.975 2 | |
RF | 可见/短波近红外 | 651 | 0.928 4 | 0.432 7 | 0.751 7 | 0.769 4 | 2.007 0 |
长波近红外 | 600 | 0.910 6 | 0.499 7 | 0.591 2 | 0.816 2 | 1.564 1 | |
数据级数据融合 | 1 251 | 0.929 4 | 0.434 7 | 0.768 5 | 0.688 5 | 2.078 8 | |
特征级数据融合 | 106 | 0.886 2 | 0.545 8 | 0.740 7 | 0.753 1 | 1.963 9 | |
ELM | 可见/短波近红外 | 651 | 0.637 7 | 0.973 9 | 0.745 6 | 0.778 7 | 1.982 8 |
长波近红外 | 600 | 0.633 4 | 1.012 2 | 0.664 5 | 0.739 4 | 1.726 6 | |
数据级数据融合 | 1 251 | 0.647 3 | 0.971 9 | 0.753 2 | 0.710 9 | 2.013 3 | |
特征级数据融合 | 106 | 0.768 3 | 0.778 9 | 0.787 0 | 0.682 5 | 2.166 8 | |
1D-CNN | 可见/短波近红外 | 651 | 0.836 3 | 0.654 5 | 0.724 2 | 0.810 8 | 1.921 9 |
长波近红外 | 600 | 0.534 0 | 1.141 2 | 0.622 0 | 0.784 4 | 1.642 4 | |
数据级数据融合 | 1 251 | 0.842 5 | 0.649 4 | 0.802 0 | 0.636 8 | 2.268 4 | |
特征级数据融合 | 106 | 0.819 6 | 0.687 3 | 0.733 4 | 0.763 5 | 1.954 8 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
李晓丽, 张东毅, 董雨伦, 等 . 基于卷积神经网络的茶鲜叶主要内含物的光谱快速检测方法[J]. 中国农业大学学报, 2021, 26(11): 113-122.
|
|
|
[13] |
|
[14] |
|
[15] |
王凡, 赵春江, 徐波, 等 . 便携式茶鲜叶品质光谱检测装置研制[J]. 农业工程学报, 2020, 36(24): 273-280.
|
|
|
[16] |
李文萃, 周新奇, 范起业, 等 . 便携式近红外茶叶品质快速检测仪设计与试验[J]. 现代食品科技, 2021, 37(5): 303-309.
|
|
|
[17] |
|
[18] |
|
[19] |
董春旺, 刘中原, 杨明, 等 . 基于多源信息融合的绿茶杀青叶水分含量智能感知方法[J]. 食品科学, 2022, 43(20): 242-251.
|
|
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
饶利波, 陈晓燕, 庞涛 . 基于光谱技术的Bipls算法结合CARS算法的苹果可溶性固形物含量检测[J]. 发光学报, 2019, 40(3): ID 389.
|
|
|
[25] |
翁海勇, 许金钗, 陶铸, 等 . 高EGCG含量茶树品种光谱识别模型构建[J]. 中国农机化学报, 2021, 42(6): 111-117.
|
|
|
[26] |
安琪, 王占彬, 安国庆, 等 . 基于随机森林-遗传算法-极限学习机的非侵入式负荷识别方法[J]. 科学技术与工程, 2022, 22(5): 1929-1935.
|
|
|
[27] |
|
[28] |
|
[29] |
李晓丽, 魏玉震, 徐劼, 等 . 基于高光谱成像的茶叶中EGCG分布可视化[J]. 农业工程学报, 2018, 34(7): 180-186.
|
|
|
[30] |
姚奉奇, 陶骏骏, 王海晖, 等 . 茶多酚热解特性及其反应机理研究[J]. 林产化学与工业, 2017, 37(5): 19-27.
|
|
[1] | ZHANG Fan, ZHOU Mengting, XIONG Benhai, YANG Zhengang, LIU Minze, FENG Wenxiao, TANG Xiangfang. Research Advances and Prospect of Intelligent Monitoring Systems for the Physiological Indicators of Beef Cattle [J]. Smart Agriculture, 2024, 6(4): 1-17. |
[2] | ZHU Dengsheng, FANG Hui, HU Shaoming, WANG Wenquan, ZHOU Yansuo, WANG Hongyan, LIU Fei, HE Yong. Development and Application of an Intelligent Remote Management Platform for Agricultural Machinery [J]. Smart Agriculture, 2020, 2(2): 67-81. |
[3] | Cao Yudong, Qi Weiyan, Li Xian, Li Zhemin. Research progress and prospect on non-destructive detection and quality grading technology of apple [J]. Smart Agriculture, 2019, 1(3): 29-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||