Smart Agriculture ›› 2025, Vol. 7 ›› Issue (5): 78-87.doi: 10.12133/j.smartag.SA202410037
• Special Issue--Opto-Intelligent Agricultural Innovation Technology and Application • Previous Articles Next Articles
HOU Ying1,3, SUN Tan2,3(
), CUI Yunpeng1,3(
), WANG Xiaodong4, ZHAO Anping4, WANG Ting1,3, WANG Zengfei4, YANG Weijia4, GU Gang5, WU Shaodong6
Received:2024-10-11
Online:2025-09-30
Foundation items:National Key Research and Development Program of China(2023YFD1600305); Beijing Smart Agriculture Innovation Consortium Project(BAIC10-2025); Beijing Rural Revitalization Agricultural Science and Technology Projects(NY2502270125)
About author:HOU Ying, E-mail: houying@caas.cn
corresponding author:
CLC Number:
HOU Ying, SUN Tan, CUI Yunpeng, WANG Xiaodong, ZHAO Anping, WANG Ting, WANG Zengfei, YANG Weijia, GU Gang, WU Shaodong. Vegetable Price Prediction Based on Optimized Neural Network Time Series Models[J]. Smart Agriculture, 2025, 7(5): 78-87.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202410037
Table 3
Comparison of daily price prediction performance of different models before tuning for lettuce, carrot, white radish, and eggplant
| 模型架构 | 模型名称 | 结球生菜 | 胡萝卜 | 白萝卜 | 茄子 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MAE/(元/kg) | MAPE/% | MSE/(元2/kg2) | MAE/(元/kg) | MAPE/% | MSE/(元2/kg2) | MAE/(元/kg) | MAPE/% | MSE/(元2/kg2) | MAE/(元/kg) | MAPE/% | MSE/(元2/kg2) | ||
| Transformer | PatchTST | 0.550 | 0.156 | 0.827 | 0.142 | 0.070 | 0.050 | 0.159 | 0.117 | 0.061 | 0.465 | 0.124 | 0.489 |
| iTransformer | 0.625 | 0.156 | 0.941 | 0.160 | 0.079 | 0.056 | 0.186 | 0.136 | 0.074 | 0.514 | 0.137 | 0.541 | |
| MLP | SOFTS | 0.621 | 0.164 | 0.952 | 0.173 | 0.085 | 0.063 | 0.184 | 0.133 | 0.075 | 0.532 | 0.141 | 0.576 |
| TiDE | 0.606 | 0.158 | 0.941 | 0.169 | 0.082 | 0.059 | 0.174 | 0.127 | 0.067 | 0.513 | 0.138 | 0.556 | |
| LLM | Time-LLM | 0.578 | 0.154 | 0.856 | 0.152 | 0.075 | 0.052 | 0.175 | 0.126 | 0.070 | 0.470 | 0.125 | 0.470 |
Table 4
Comparison of daily price prediction performance of different models after tuning for lettuce, carrot, white radish, and eggplant
| 模型架构 | 模型名称 | 结球生菜 | 胡萝卜 | 白萝卜 | 茄子 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MAE/(元/kg) | MAPE/% | MSE/(元2/kg2) | MAE/(元/kg) | MAPE/% | MSE/(元2/kg2) | MAE/(元/kg) | MAPE/% | MSE/(元2/kg2) | MAE/(元/kg) | MAPE/% | MSE/(元2/kg2) | ||
| Transformer | PatchTST | 0.531 | 0.140 | 0.724 | 0.079 | 0.035 | 0.008 | 0.037 | 0.042 | 0.003 | 0.249 | 0.069 | 0.108 |
| iTransformer | 0.540 | 0.140 | 0.788 | 0.079 | 0.035 | 0.008 | 0.032 | 0.036 | 0.002 | 0.271 | 0.075 | 0.120 | |
| MLP | SOFTS | 0.511 | 0.133 | 0.707 | 0.080 | 0.035 | 0.008 | 0.046 | 0.052 | 0.004 | 0.273 | 0.076 | 0.121 |
| TiDE | 0.543 | 0.142 | 0.766 | 0.102 | 0.044 | 0.014 | 0.039 | 0.044 | 0.003 | 0.290 | 0.081 | 0.140 | |
| LLM | Time-LLM | 0.519 | 0.135 | 0.725 | 0.073 | 0.032 | 0.007 | 0.046 | 0.053 | 0.003 | 0.253 | 0.070 | 0.114 |
Table 5
Comparison of weekly price prediction performance of different models before tuning for lettuce, carrot, white radish, and eggplant
| 模型架构 | 模型名称 | 结球生菜 | 胡萝卜 | 白萝卜 | 茄子 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MAE/(元/kg) | MAPE/% | MSE/(元2/kg2) | MAE/(元/kg) | MAPE/% | MSE/(元2/kg2) | MAE/(元/kg) | MAPE/% | MSE/(元2/kg2) | MAE/(元/kg) | MAPE/% | MSE/(元2/kg2) | ||
| Transformer | PatchTST | 1.073 | 0.243 | 2.597 | 0.248 | 0.123 | 0.123 | 0.262 | 0.192 | 0.152 | 0.781 | 0.217 | 1.152 |
| iTransformer | 1.250 | 0.284 | 3.087 | 0.292 | 0.144 | 0.160 | 0.284 | 0.203 | 0.177 | 0.957 | 0.273 | 1.583 | |
| MLP | SOFTS | 1.137 | 0.256 | 2.683 | 0.278 | 0.138 | 0.153 | 0.280 | 0.199 | 0.173 | 0.956 | 0.275 | 1.575 |
| TiDE | 1.129 | 0.238 | 2.957 | 0.297 | 0.143 | 0.164 | 0.269 | 0.184 | 0.168 | 0.818 | 0.216 | 1.173 | |
| LLM | Time-LLM | 1.477 | 0.343 | 4.060 | 0.551 | 0.296 | 0.483 | 0.377 | 0.282 | 0.269 | 0.766 | 0.200 | 1.127 |
Table 6
Comparison of weekly price prediction performance of different models after tuning for lettuce, carrot, white radish, and eggplant
| 模型架构 | 模型名称 | 结球生菜 | 胡萝卜 | 白萝卜 | 茄子 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MAE/(元/kg) | MAPE/% | MSE/(元2/kg2) | MAE/(元/kg) | MAPE/% | MSE/(元2/kg2) | MAE/(元/kg) | MAPE/% | MSE/(元2/kg2) | MAE/(元/kg) | MAPE/% | MSE/(元2/kg2) | ||
| Transformer | PatchTST | 0.447 | 0.126 | 0.505 | 0.085 | 0.037 | 0.009 | 0.051 | 0.054 | 0.005 | 0.326 | 0.090 | 0.239 |
| iTransformer | 0.474 | 0.130 | 0.647 | 0.076 | 0.033 | 0.009 | 0.066 | 0.071 | 0.007 | 0.387 | 0.109 | 0.256 | |
| MLP | SOFTS | 0.467 | 0.133 | 0.528 | 0.141 | 0.062 | 0.022 | 0.094 | 0.102 | 0.011 | 0.591 | 0.168 | 0.567 |
| TiDE | 0.452 | 0.125 | 0.564 | 0.080 | 0.035 | 0.009 | 0.083 | 0.092 | 0.010 | 0.348 | 0.097 | 0.257 | |
| LLM | Time-LLM | 0.708 | 0.255 | 0.511 | 0.105 | 0.046 | 0.013 | 0.073 | 0.079 | 0.011 | 0.246 | 0.070 | 0.088 |
| [1] |
郑艳洁, 郭晓晓. 流通业效率、数字经济发展对农产品价格波动的影响[J]. 商业经济研究, 2023, (1): 67-70.
|
|
|
|
| [2] |
许世卫, 李乾川, 栾汝朋, 等. 农产品市场监测预警深度学习智能预测方法[J]. 智慧农业(中英文), 2025, 7(1): 57-69.
|
|
|
|
| [3] |
陈雯, 谢云. 经济政策不确定性对中国农产品价格的影响[J]. 农业展望, 2024, 20(10): 62-68.
|
|
|
|
| [4] |
夏如玉, 王梓桥. 基于ARIMA模型对重庆市GDP预测分析[J]. 中国储运, 2022(8): 93-94.
|
|
|
|
| [5] |
黄文玲, 郑晓颖, MCCARTHYBREDA, 等. 基于ARIMA模型对广东省生猪价格的短期预测[J]. 中国畜牧杂志, 2018, 54(12): 119-123.
|
|
|
|
| [6] |
胡杨, 张朝阳. 基于ARIMA模型的河北省玉米价格预测[J]. 农业与技术, 2020, 40(23): 149-152.
|
|
|
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
吕星辰. 基于网络舆情影响的小宗农产品价格预测研究[D]. 哈尔滨: 东北农业大学, 2023.
|
|
|
|
| [12] |
王溯, 胡长情. 基于ARCH类模型的农产品价格波动特征研究[J]. 中国林业经济, 2023, (2): 80-84.
|
|
|
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
李哲敏, 许世卫, 崔利国, 等. 基于动态混沌神经网络的预测研究: 以马铃薯时间序列价格为例[J]. 系统工程理论与实践, 2015, 35(8): 2083-2091.
|
|
|
|
| [18] |
|
| [19] |
王桂红, 潘栋, 刘向锋. 基于门控循环单元网络的农产品价格预测模型构建[J]. 沈阳师范大学学报(自然科学版), 2022, 40(5): 451-456.
|
|
|
|
| [20] |
胡彦军, 张平川, 尚峥, 等. 基于深度学习的大蒜价格预测研究[J]. 河南科技学院学报(自然科学版), 2023, 51(3): 35-42.
|
|
|
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
袁铭涓, 孙若莹. 基于LSTM神经网络的大宗农产品价格预测研究[J]. 海峡科技与产业, 2021, 34(11): 43-47, 60.
|
|
|
|
| [25] |
张璇. 基于LSTM的河南省花生价格预测研究[D]. 郑州: 华北水利水电大学, 2021.
|
|
|
|
| [26] |
贾宁, 郑纯军. 基于LSTM-DA神经网络的农产品价格指数短期预测模型[J]. 计算机科学, 2019, 46(S2): 62-65, 71.
|
|
|
|
| [27] |
吴培, 李哲敏. 中国猪肉价格预测研究: 基于ARIMA-GM-RBF组合模型的分析[J]. 价格理论与实践, 2019(1): 75-78.
|
|
|
|
| [28] |
|
| [29] |
|
| [30] |
曹新悦, 贺春林, 崔梦天. 基于X12-ARIMA和LSTM组合模型的城市蔬菜价格波动规律及预测[J]. 西南民族大学学报(自然科学版), 2021, 47(4): 418-425.
|
|
|
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
DAS A,
|
| [35] |
|
| [36] |
曹淑欣, 许学斌, 路龙宾, 等. 融合注意力机制与残差网络的人耳识别方法[J]. 光电子·激光, 2023, 34(4): 378-386.
|
|
|
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||