1 |
WEGREN S K. Challenges to global food security: A policy approach to the 2021–2022 food crisis[J]. World food policy, 2023, 9( 1): 127- 148.
|
2 |
KISZONAS A M, MORRIS C F. Wheat breeding for quality: A historical review[J]. Cereal chemistry, 2018, 95( 1): 17- 34.
|
3 |
WU W, MA B L. A new method for assessing plant lodging and the impact of management options on lodging in canola crop production[J]. Scientific reports, 2016, 6: ID 31890.
|
4 |
BERRY P M, SPINK J. Predicting yield losses caused by lodging in wheat[J]. Field crops research, 2012, 137: 19- 26.
|
5 |
GULATI A, TERWAY P, HUSSAIN S. Crop insurance in India: Key issues and way forward[R/OL]. Working paper, 2018. [ 2023-09-20].
|
6 |
SHAH L, YAHYA M, SHAH S M A, et al. Improving lodging resistance: using wheat and rice as classical examples[J]. International journal of molecular sciences, 2019, 20( 17): ID 4211.
|
7 |
ZHANG H S, LIN H, LI Y, et al. Mapping urban impervious surface with dual-polarimetric SAR data: An improved method[J]. Landscape and urban planning, 2016, 151: 55- 63.
|
8 |
ZHANG Z, FLORES P, IGATHINATHANE C, et al. Wheat lodging detection from UAS imagery using machine learning algorithms[J]. Remote sensing, 2020, 12( 11): ID 1838.
|
9 |
LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision, 2004, 60( 2): 91- 110.
|
10 |
KITANO B T, MENDES C C T, GEUS A R, et al. Corn plant counting using deep learning and UAV images[J]. IEEE geoscience and remote sensing letters, 2024: 1- 5.
|
11 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE trans pattern anal Mach intell, 2017, 39( 6): 1137- 1149.
|
12 |
JIANG P Y, ERGU D J, LIU F Y, et al. A review of yolo algorithm developments[J]. Procedia computer science, 2022, 199: 1066- 1073.
|
13 |
SAMET N, HICSONMEZ S, AKBAS E. Reducing label noise in anchor-free object detection[EB/OL]. arXiv: 2008.01167, 2020.
|
14 |
YANG B H, ZHU Y, ZHOU S J. Accurate wheat lodging extraction from multi-channel UAV images using a lightweight network model[J]. Sensors, 2021, 21( 20): ID 6826.
|
15 |
ZHAO X, YUAN Y, SONG M, et al. Use of unmanned aerial vehicle imagery and deep learning unet to extract rice lodging[J]. Sensors, 2019, 19( 18): ID 3859.
|
16 |
SU Z B, WANG Y, XU Q, et al. LodgeNet: Improved rice lodging recognition using semantic segmentation of UAV high-resolution remote sensing images[J]. Computers and electronics in agriculture, 2022, 196: ID 106873.
|
17 |
ZHANG D Y, DING Y, CHEN P F, et al. Automatic extraction of wheat lodging area based on transfer learning method and deeplabv3+ network[J]. Computers and electronics in agriculture, 2020, 179: ID 105845.
|
18 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2017: 2117- 2125.
|
19 |
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]// In: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference. Munich, Germany: Springer 2015: 234- 241.
|
20 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// 31st Conference on Neural Information Processing Systems (NIPS 2017). Long Beach, USA: NIPS, 2017.
|
21 |
DAI Q F, GUO Y H, LI Z, et al. Citrus disease image generation and classification based on improved FastGAN and EfficientNet-B5[J]. Agronomy, 2023, 13( 4): ID 988.
|
22 |
ZHANG L, DU J M, DONG S F, et al. AM-ResNet: Low-energy-consumption addition-multiplication hybrid ResNet for pest recognition[J]. Computers and electronics in agriculture, 2022, 202: ID 107357.
|
23 |
HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2017: 2961- 2969.
|
24 |
WANG X, ZHANG R, KONG T, et al. Solov2: Dynamic and fast instance segmentation[C]// 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Vancouver, Canada: NeurIPS, 2020.
|
25 |
CHENG B W, MISRA I, SCHWING A G, et al. Masked-attention mask transformer for universal image segmentation[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2022: 1290- 1299.
|
26 |
SINGH D, WANG X, KUMAR U, et al. High-throughput phenotyping enabled genetic dissection of crop lodging in wheat[J]. Frontiers in plant science, 2019, 10: ID 412524.
|
27 |
YU J, CHENG T, CAI N, et al. Wheat lodging segmentation based on Lstm_PSPNet deep learning network[J]. Drones, 2023, 7( 2): ID 143.
|