Smart Agriculture ›› 2019, Vol. 1 ›› Issue (4): 62-71.doi: 10.12133/j.smartag.2019.1.4.201910-SA001
• Information Processing and Decision Making • Previous Articles Next Articles
Ma Xinming1,2, Ma Zhaowu1, Xu Xin1,2, Xi Lei1, Xiong Shuping2, Li Haiyang1
Received:
2019-10-20
Revised:
2019-11-11
Online:
2019-10-30
Published:
2019-12-24
corresponding author:
Xinming Ma
CLC Number:
Ma Xinming, Ma Zhaowu, Xu Xin, Xi Lei, Xiong Shuping, Li Haiyang. Developmental model of wheat smart production based on the integration of information technology, agricultural machinery and agronomy[J]. Smart Agriculture, 2019, 1(4): 62-71.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.smartag.net.cn/EN/10.12133/j.smartag.2019.1.4.201910-SA001
Table 1
Spatial variation of grain yield and inorganic nitrogen concentration in different treatments
指标 | 处理 | 最大 | 最小 | 平均 | 标准差 | 变异系数(%) |
---|---|---|---|---|---|---|
小麦产量(kg/hm2) | 精播 | 10149.8 | 5997.3 | 7805.5 | 1173.7 | 15 |
精播+精平 | 12015.3 | 5969.8 | 8919.6 | 1456.2 | 16.3 | |
常规 | 9836.2 | 5196.8 | 7242.8 | 1293.8 | 17.9 | |
土壤0~20cm无机氮浓度(%) | 精播 | 33.9 | 10.4 | 18.5 | 5.8 | 31.1 |
精播+精平 | 29.9 | 12 | 18.7 | 5.9 | 31.8 | |
常规 | 36.4 | 11.8 | 20.4 | 6.4 | 31.3 |
1 | 申格, 吴文斌, 史云, 等 . 我国智慧农业研究和应用最新进展分析[J]. 中国农业信息, 2018, 30(2): 1-14. |
Shen G , Wu W , Shi Y , et al . The latest progress in research and application of smart agriculture in China[J]. China Agricultural Information, 2018, 30(2): 1-14. | |
2 | O'Grady M J , O'Hare G M P . Modelling the smart farm[J]. Information Processing in Agriculture, 2017, (4): 179-187. |
3 | 胡亚兰, 张荣 . 我国智慧农业的运营模式、问题与战略对策[J]. 经济体制改革, 2017, (4): 70-76. |
Hu Y , Zhang R . The operation mode, problems and countermeasures of the wisdom agriculture in china[J]. Reform of Economic System, 2017, (4): 70-76. | |
4 | Antonacci A , Arduini F , Moscone D , et al . Nanostructured (Bio)sensors for smart agriculture[J]. Trends in Analytical Chemistry, 2018(98): 95-103. |
5 | Prakash P J , Ali Y , Dimitrios G , et al . Internet of things platform for smart farming: experiences and lessons learnt[J]. Sensors (Basel, Switzerland), 2016, 16(11): 1884. |
6 | Nugroho A P , Okayasu T , Inoue E , et al . Development of actuation framework for agricultural informatization supporting system[C]// IFAC Bio-Robotics, At Osaka, 2013, 46: 181-186. |
7 | Zhu X , Liu Y . ZigBee implementation in intelligent agriculture based on internet of things[P]. Emeit-12, 2012. |
8 | Li Y . Japan's modern agriculture and its effects on agricultural development of anhui province[J]. Asian Agricultural Research, 2017, 9(5): 52-55. |
9 | 赵春江 . 提高农机智能化水平 加快智慧农业应用发展[N]. 中国农机化导报, 2019-02-04 (001). |
Zhao C . Improving the level of agricultural machinery intelligence and accelerating the development of smart agriculture application[N]. China Agricultural Mechanization Guide, 2019-02-04 (001). | |
10 | 钱素娟, 刘海英 . 我国智慧农业的运营模式、挑战与转型路径[J]. 改革与战略, 2018, 34(1): 116-119. |
Qian S , Liu H . The operation mode, challenge and transition path of intelligent agriculture in China[J]. Reformation & Strategy, 2018, 34 (1): 116-119. | |
11 | 张继梅 . 我国智慧农业的发展路径及保障[J]. 改革与战略, 2017, 33(7): 104-107. |
Zhang J . The development path and guarantee of China's wisdom agriculture[J]. Reformation & Strategy, 2017, 33(7): 104-107. | |
12 | Carlos K , Pekka S J , Markus T , et al . Smart water management platform: IoT-based precision irrigation for agriculture[J]. Sensors (Basel, Switzerland), 2019, 19(2): 276. |
13 | Muangprathub J , Boonnam N , Kajornkasirat S , et al . IoT and agriculture data analysis for smart farm[J]. Computers and Electronics in Agriculture, 2019, 156: 467-474. |
14 | White B J , Amrine D E , Larson R L . Big data analytics and precision animal agriculture symposium: Data to decisions[J]. Journal of Animal Science, 2018, 96(4): 1531-1539. |
15 | Hsu T C , Yang H , Chung Y C , et al . A creative IoT agriculture platform for cloud fog computing[J]. Sustainable Computing: Informatics and Systems, 2018. . |
16 | Patrício D I , Rieder R . Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review[J]. Computers and Electronics in Agriculture, 2018, 153: 69-81. |
17 | Liakos K G , Busato P , Moshou D , et al . Machine learning in agriculture: a review[J]. Sensors (Basel, Switzerland), 2018, 18(8): 2674. |
18 | 赵春江 . 智慧农业发展现状及战略目标研究[J].智 慧农业, 2019, 1(1): 1-7. |
Zhao C . State-of-the-art and recommended developmental strategic objectives of smart agriculture[J]. Smart Agriculture, 2019, 1(1): 1-7. | |
19 | 徐建国, 肖海峰 . 基于大数据的智慧农业物联网系统实现[J]. 软件导刊, 2018, 17(8): 129-132, 140. |
Xu J , Xiao H . Realization of a wisdom agricultural internet of things system based on big data[J]. Software Guide, 2018, 17 (8): 129-132, 140. | |
20 | 佟彩, 吴秋兰, 刘琛, 等 . 基于3S技术的智慧农业研究进展[J]. 山东农业大学学报(自然科学版), 2015, 46(6): 856-860. |
Tong C , Wu Q , Liu C , et al . A Review of wisdom agriculture based on 3S technologies[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2015, 46(6): 856-860. | |
21 | 王晓敏, 邓春景 . 基于“互联网+”背景的我国智慧农业发展策略与路径[J]. 江苏农业科学, 2017, 45(16): 312-315. |
22 | 孙志国 . 区块链、物联网与智慧农业[J]. 农业展望, 2017, 13(12): 72-74. |
Sun Z . Block Chain, Internet of things and intelligent agriculture[J]. Agricultural Outlook, 2017, 13(12): 72-74. | |
23 | 李兵, 林文钊, 罗峥尹 . 基于机器学习的智慧农业决策系统设计与实现[J]. 信息与电脑(理论版), 2018, (24): 74-75. |
Li B , Lin W , Luo Z . Design and implementation of intelligrent agricultural decision system based on machine learning[J]. China Computer&Communication, 2018, (24): 74-75. | |
24 | 孙岩, 马中杰, 郑国清 . 河南省农业信息服务现状及发展对策[J]. 河南农业科学, 2013, 42(12): 158-161. |
Sun Y , Ma Z , Zheng G . Agricultural information service situation and countermeasures in Henan[J]. Journal of Henan Agricultural Sciences, 2013, 42 (12): 158-161. | |
25 | 高雅雯 . 河南省农村土地流转问题研究[D]. 秦皇岛: 河北科技师范学院, 2017. |
Gao Y . The research on province land circulation problem in Henan[D]. Qinhuangdao: Hebei Normal University of Science & Technology, 2017. | |
26 | 陈威, 郭书普 . 中国农业信息化技术发展现状及存在的问题[J]. 农业工程学报, 2013, 29(22): 196-205. |
Chen W , Guo S . Current situation and existing problems of agricultural informatization in China[J]. Transactions of the CSAE, 2013, 29(22): 196-205. | |
27 | 熊淑萍, 孟香苹, 王小纯, 等 . 小麦玉米一体化群体配置对小麦冠层结构和产量影响[J]. 麦类作物学报, 2018, 38(8): 970-978. |
Xiong S , Meng X , Wang X , et al . Effects of wheat and maize integrated population patterns on the canopy structure and yield of wheat[J]. Journal of Triticeae Crops, 2018, 38(8): 970-978. | |
28 | 梁建, 陈聪, 曹光乔 . 农机农艺融合理论方法与实现途径研究[J]. 中国农机化学报, 2014, 35(3): 1-3, 7. |
Liang J , Chen C , Cao G . Theoretical methods and approach for integration of agricultural machinery and agronomy[J]. Journal of Chinese Agricultural Mechanization, 2014, 35 (3): 1-3, 7. | |
29 | 罗锡文, 廖娟, 邹湘军, 等 . 信息技术提升农业机械化水平[J]. 农业工程学报, 2016, 32(20): 1-14. |
Luo X , Liao J , Zou X , et al . Enhancing agricultural mechanization level through information technology[J]. Transactions of the CSAE, 2016, 32(20): 1-14. | |
30 | 王建波, 赵玉芹, 朱晨辉, 等 . 自动导航拖拉机田间作业路径规划与应用试验[J]. 农机化研究, 2017, 39(2): 242-245. |
Wang J , Zhao Y , Zhu C , et al . Field-work path planning for tractor with automatic navigation and practical application[J]. Journal of Agricultural Mechanization Research, 2017, 39(2): 242-245. | |
31 | 许鑫, 张浩, 席磊, 等 . 基于WebGIS的小麦精准施肥决策系统[J]. 农业工程学报, 2011, 27(S2): 94-98. |
Xu X , Zhang H , Xi L , et al . Decision-making system for wheat precision fertilization based on WebGIS[J]. Transactions of the CSAE, 2011, 27(S2): 94-98. | |
32 | 时雷, 庞晓丹, 钱诚, 等 . 基于图像处理技术的小麦群体叶绿素状况估计研究[J]. 太原理工大学学报, 2016, 47(2): 223-227, 232. |
Shi L , Pang X , Qian C , et al . Research on estimation of wheat population chlorophyll status using image processing technology[J]. Journal of Taiyuan University of Technology, 2016, 47 (2): 223-227, 232. | |
33 | 汪强, 郑光, 马新明, 等 . 小麦产量实时测报系统[J]. 计算机系统应用, 2016, 25(11): 279-283. |
Wang Q , Zheng G , Ma X , et al . The real-time wheat yield measuring system[J]. Computer Systems & Applications, 2016, 25 (11): 279-283. |
[1] | WANG Lin, LIANG Jian, MENG Fanyu, MENG Yang, ZHANG Yongtao, LI Zhenhai. Estimating Grain Protein Content of Winter Wheat in Producing Areas Based on Remote Sensing and Meteorological Data [J]. Smart Agriculture, 2021, 3(2): 15-22. |
[2] | YANG Feifei, LIU Shengping, ZHU Yeping, LI Shijuan. Identification and Level Discrimination of Waterlogging Stress in Winter Wheat Using Hyperspectral Remote Sensing [J]. Smart Agriculture, 2021, 3(2): 35-44. |
[3] | FLORES Paulo, ZHANG Zhao. Wheat Lodging Ratio Detection Based on UAS Imagery Coupled with Different Machine Learning and Deep Learning Algorithms [J]. Smart Agriculture, 2021, 3(2): 23-34. |
[4] | HU Yanan, LIANG Ju, LIANG Shefang, LI Shijuan, ZHU Yeping, E Yue. Optimum Sowing Date of Winter Wheat in Next 40 Years Based on DSSAT-CERES-Wheat Model [J]. Smart Agriculture, 2021, 3(2): 68-76. |
[5] | Liu Shouyang, Jin Shichao, Guo Qinghua, Zhu Yan, Baret Fred. An algorithm for estimating field wheat canopy light interception based on Digital Plant Phenotyping Platform [J]. Smart Agriculture, 2020, 2(1): 87-98. |
[6] | Ji Yunzhou, Du Shengjia, Ji Tongkui, Song Huaibo. Design and test of wheat stripe rust remote monitoring platform based on embedded system [J]. Smart Agriculture, 2019, 1(3): 100-112. |
[7] | Gao Wanlin, Zhang Ganghong, Zhang Guofeng, Huang Feng, Wu Dehua, Tao Sha, Wang Minjuan. Original innovation of key technologies leading healthy development of smart agricultural [J]. Smart Agriculture, 2019, 1(1): 8-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||