Smart Agriculture ›› 2020, Vol. 2 ›› Issue (3): 37-47.doi: 10.12133/j.smartag.2020.2.3.202003-SA010
• Topic--Agricultural Artificial Intelligence and Big Data • Previous Articles Next Articles
LI Hualong1(), LI Miao1(
), ZHAN Kai2(
), LIU Xianwang1, YANG Xuanjiang1, HU Zelin1, GUO Panpan1
Received:
2020-03-02
Revised:
2020-08-06
Online:
2020-09-30
Published:
2020-10-26
corresponding author:
Miao LI,Kai ZHAN
E-mail:hlli@iim.ac.cn;mli@iim.ac.cn;zhankai633@126.com
CLC Number:
LI Hualong, LI Miao, ZHAN Kai, LIU Xianwang, YANG Xuanjiang, HU Zelin, GUO Panpan. Construction Method and Performance Test of Prediction Model for Laying Hen Breeding Environmental Quality Evaluation[J]. Smart Agriculture, 2020, 2(3): 37-47.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.smartag.net.cn/EN/10.12133/j.smartag.2020.2.3.202003-SA010
Table 1
Classification of environmental suitability of laying hens facility breeding environment
质量评价等级 | 温度/℃ | 湿度/% | 光照强度/lx | NH3浓度/(mg?m-3) |
---|---|---|---|---|
5级(优) | 20~25 | 60~70 | 28~30 | <15 |
4级(良) | 18~20或25~26 | 55~60或70~75 | 20~28或30~35 | 15~17 |
3级(一般) | 14~18或26~27 | 50~55或75~78 | 15~20或35~40 | 17~18 |
2级(差) | 10~14或27~30 | 40~50或78~80 | 10~15或40~50 | 18~25 |
1级(极差) | <10或>30 | <40或>80 | <10或>50 | >25 |
Table 3
Experimental results of prediction model based on CS-BP neural network
试验号 | MAE | MAPE | R2 |
---|---|---|---|
1 | 0.9113 | 0.0181 | 0.8116 |
2 | 0.9120 | 0.0175 | 0.8324 |
3 | 0.9131 | 0.0178 | 0.8231 |
4 | 0.9253 | 0.0188 | 0.7980 |
5 | 0.8929 | 0.0172 | 0.8449 |
6 | 0.9011 | 0.0177 | 0.8246 |
7 | 0.8744 | 0.0169 | 0.8564 |
8 | 0.8913 | 0.0171 | 0.8392 |
9 | 0.7913 | 0.0153 | 0.8793 |
10 | 0.9103 | 0.0186 | 0.8160 |
平均值 | 0.8923 | 0.0175 | 0.8326 |
Table 4
Experimental results of prediction model based on improved CS-BP neural network
试验号 | MAE | MAPE | R2 |
---|---|---|---|
1 | 0.9394 | 0.0184 | 0.8300 |
2 | 0.8091 | 0.0159 | 0.8616 |
3 | 0.8714 | 0.0171 | 0.8559 |
4 | 0.7825 | 0.0155 | 0.8869 |
5 | 0.9020 | 0.0177 | 0.8261 |
6 | 0.8913 | 0.0170 | 0.8416 |
7 | 0.9124 | 0.0175 | 0.8430 |
8 | 0.9129 | 0.0179 | 0.8364 |
9 | 0.9031 | 0.0180 | 0.8551 |
10 | 0.7710 | 0.0151 | 0.8796 |
平均值 | 0.8695 | 0.0170 | 0.8512 |
1 | 李保明, 王阳, 郑炜超. 我国规模化养鸡环境控制技术的最新进展[J]. 中国家禽, 2019, 41(9): 1-7. |
LI B, WANG Y, ZHENG W. Advances in environment control technology of poultry in China[J]. China Poultry, 2019, 41(9): 1-7. | |
2 | 滕光辉. 畜禽设施精细养殖中信息感知与环境调控综述[J]. 智慧农业, 2019, 1(3): 1-12. |
TENG G. Information sensing and environment control of precision facility livestock and poultry farming[J]. Smart Agriculture, 2019, 1(3): 1-12. | |
3 | 赵一广, 杨亮, 郑姗姗, 等. 家畜智能养殖设备和饲喂技术应用研究现状与发展趋势[J]. 智慧农业, 2019, 1(1): 20-31. |
ZHAO Y, YANG L, ZHENG S, et al. Advances in the development and applications of intelligent equipment and feeding technology for livestock production[J]. Smart Agriculture, 2019, 1(1): 20-31. | |
4 | KUANG W, LIU H, YAO Y, et al. The monitoring and analysis of cascade cage laying house environmental quality and laying performance[J]. China Poultry. 2017, 39(1): 64-65. |
5 | 左玲玲. 我国生猪生产发展政策措施[J]. 兽医导刊, 2017(7): 17-18. |
ZUO L. Policy measures for the development of pig production in China[J]. Veterinary Orientation, 2017 (7): 17-18. | |
6 | XIN H, GATES R S, GREEN A R, et al. Environmental impacts and sustainability of egg production systems[J]. Poultry Science, 2011, 90 (1): 263-277. |
7 | 周可嘉. 现代化超大规模蛋鸡舍冬春季环境参数控制综合评价研究[D]. 杨凌: 西北农林科技大学, 2014. |
ZHOU K. Comprehensive evaluation of environmental parameters control in winter and spring in modern super large scale layer house[D]. Yangling: Northwest Agricultural and Forestry University, 2014. | |
8 | 谢秋菊, 苏中滨, NI J, 等. 猪舍环境适宜性模糊综合评价[J]. 农业工程学报, 2016, 23(16): 198-205. |
XIE Q, SU Z, NI J, et al. Fuzzy synthetic assessment of swine house environmental adaptability[J]. Transactions of the CSAE, 2016, 23(16): 198-205. | |
9 | BASAK J K, ARULMOZHI E, KHAN F, et al. Modelling of ambient environment and thermal status relationship of pig's body in a pig barn[J]. Indian Journal of Animal Research. 2020, 54(8): 1049-1054. |
10 | 陈冲, 刘星桥, 刘超吉, 等. 哺乳母猪舍环境舒适度评价预测模型优化[J]. 农业机械学报, 2020, 51(8): 311-319. |
CHEN C, LIU X, LIU C, et al. Optimization of evaluation and prediction model of environmental comfort in lactating sow house[J]. Transactions of the CSAM, 2020, 51(8): 311-319. | |
11 | KARADURMUS E, CESMECI M, YUCEER M. An artificial neural network model for the effects of chicken manure on ground water[J]. Applied Soft Computing, 2012, 12: 494-497. |
12 | 陈伟宏, 安吉尧, 李仁发, 等. 深度学习认知计算综述[J]. 自动化学报, 2017, 43(11): 1886-1897. |
CHEN W, AN J, LI R, et al. Review on deep-learning-based cognitive computing[J]. Acta Automatica Sinica, 2017, 43(11): 1886-1897. | |
13 | MIRZAEE-GHALEH, OMID M, KEYHANI A, et al. Comparison of fuzzy and on/off controllers for winter season indoor climate management in a model poultry house[J]. Computer and Electronics in Agriculture, 2015, 110: 187-195. |
14 | RAMIREZ-MORALES I, FERNANDEZ-BLANCO E, RIVERO D. Automated early detection of drops in commercial egg production using neural networks[J]. British Poultry Science, 2017, 58(6): 739-747. |
15 | YAKUBU A, OLUERMI O, EKPO E. Predicting heat stress index in Sasso hens using automatic linear modelling and artificial neural network[J]. International Journal of Biometeorology, 2018, 62(7): 1181-1186. |
16 | 李若飞, 魏萍, 敖长林, 等. 鸡舍环境细菌的神经网络模型相关分析[J]. 现代畜牧兽医, 2009(6): 65-68. |
LI R, WEI P, AO C, et al. Neural network model correlation analysis of environmental bacteria in chicken house[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2009(6): 65-68. | |
17 | 易姣红. 基于布谷鸟搜索算法优化神经网络的研究[D]. 长沙: 长沙理工大学, 2014. |
YI J. Research on BP neural network optimization by cukoo search algorithm[D]. Changsha: Changsha University of Science and Technology, 2014. | |
18 | SHARMA V, KUMAR R. A cooperative network framework for multi-UAV guided ground Ad Hoc networks[J]. Journal of Intelligent and Robotic Systems. 2015, 77(3/4): 629-652. |
19 | 刘先旺, 李华龙, 李淼, 等. 基于CS和BP的鸡舍环境与产蛋性能关系模型研究[J]. 江苏农业科学, 2019, 47(11): 267-270. |
LIU X, LI H, LI M, et al. Study on the relationship model between the environment of chicken house and egg laying performance based on CS and BP[J]. Jiangsu Agricultural Sciences, 2019, 47(11): 267-270. | |
20 | 李华龙, 李淼, 詹凯, 等. 基于物联网的层叠式鸡舍环境智能监控系统[J]. 农业工程学报, 2015, 31(S2): 210-215. |
LI H, LI M, ZHAN K, et al. Intelligent monitoring system for laminated henhouse based on Internet of Things[J]. Transactions of the CSAE, 2015, 31(S2): 210-215. | |
21 | 中华人民共和国农业部. 畜禽场环境质量标准: [S]. 北京: 中国标准出版社, 2000. |
Ministry of Agriculture of the People's Republic of China. Environmental quality standards for livestock farms: [S]. Beijing: Standards Press of China, 2000. | |
22 | 王阳, 石海鹏, 王雅韬, 等. 侧墙进风小窗位置对蛋鸡舍内环境的影响[J]. 中国家禽, 2016, 38(16): 38-42. |
WANG Y, SHI H, WANG Y, et al. Effect of air inlets situation on microenvironment of layer house in winter[J]. China Poultry, 2016, 38(16): 38-42. | |
23 | ZHAO Y, SHEPHERD T A, LI H, et al. Environmental assessment of three egg production systems—Part I: Monitoring system and indoor air quality[J]. Poultry Science, 2015, 94(3): 518-533. |
[1] | LI Zhijun, YANG Shenghui, SHI Deshuai, LIU Xingxing, ZHENG Yongjun. Yield Estimation Method of Apple Tree Based on Improved Lightweight YOLOv5 [J]. Smart Agriculture, 2021, 3(2): 100-114. |
[2] | FLORES Paulo, ZHANG Zhao. Wheat Lodging Ratio Detection Based on UAS Imagery Coupled with Different Machine Learning and Deep Learning Algorithms [J]. Smart Agriculture, 2021, 3(2): 23-34. |
[3] | QIU Wenjie, YE Jin, HU Liangqing, YANG Juan, LI Qili, MO Jianyou, YI Wanmao. Distilled-MobileNet Model of Convolutional Neural Network Simplified Structure for Plant Disease Recognition [J]. Smart Agriculture, 2021, 3(1): 109-117. |
[4] | LI Liangde, WANG Xiujuan, KANG Mengzhen, HUA Jing, FAN Menghan. Agricultural Named Entity Recognition Based on Semantic Aggregation and Model Distillation [J]. Smart Agriculture, 2021, 3(1): 118-128. |
[5] | GUO Wei, WU Huarui, ZHU Huaji. Design and Application of Facility Greenhouse Image Collecting and Environmental Data Monitoring Robot System [J]. Smart Agriculture, 2020, 2(3): 48-60. |
[6] | WEI Jing, WANG Yuting, YUAN Huizhu, ZHANG Menglei, WANG Zhenying. Identification and Morphological Analysis of Adult Spodoptera Frugiperda and Its Close Related Species Using Deep Learning [J]. Smart Agriculture, 2020, 2(3): 75-85. |
[7] | FLORES Paulo, ZHANG Zhao, MATHEW Jithin, JAHAN Nusrat, STENGER John. Distinguishing Volunteer Corn from Soybean at Seedling Stage Using Images and Machine Learning [J]. Smart Agriculture, 2020, 2(3): 61-74. |
[8] | Zhou Chengquan, Ye Hongbao, Yu Guohong, Hu Jun, Xu Zhifu. A fast extraction method of broccoli phenotype based on machine vision and deep learning [J]. Smart Agriculture, 2020, 2(1): 121-132. |
[9] | Xia Xue, Sun Qixin, Shi Xiao, Chai Xiujuan. Apple detection model based on lightweight anchor-free deep convolutional neural network [J]. Smart Agriculture, 2020, 2(1): 99-110. |
[10] | Wu Huarui. Method of tomato leaf diseases recognition method based on deep residual network [J]. Smart Agriculture, 2019, 1(4): 42-49. |
[11] | Chen Guifen, Zhao Shan, Cao Liying, Fu Siwei, Zhou Jiaxin. Corn plant disease recognition based on migration learning and convolutional neural network [J]. Smart Agriculture, 2019, 1(2): 34-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||