Smart Agriculture ›› 2021, Vol. 3 ›› Issue (2): 88-99.doi: 10.12133/j.smartag.2021.3.2.202103-SA003
• Information Processing and Decision Making • Previous Articles Next Articles
ZHANG Xiaoqing1,2,3(), SHAO Song1,2, GUO Xinyu1,2, FAN Jiangchuan1,2(
)
Received:
2021-03-11
Revised:
2021-05-17
Online:
2021-06-30
Published:
2021-08-25
corresponding author:
Jiangchuan FAN
E-mail:15151935830@163.com;fanjc@ nercita.org.cn
CLC Number:
ZHANG Xiaoqing, SHAO Song, GUO Xinyu, FAN Jiangchuan. High-Throughput Dynamic Monitoring Method of Field Maize Seedling[J]. Smart Agriculture, 2021, 3(2): 88-99.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.smartag.net.cn/EN/10.12133/j.smartag.2021.3.2.202103-SA003
1 | JIM S. New systems enhance seed and product-placement at planting[J]. Cotton Grower, 2021, 57(1): 16-18. |
2 | WILES L J, SCHWEIZER E E. The cost of counting and identifying weed seeds and seedlings[J]. Weed Science, 1999, 47(6): 667-673. |
3 | ZHAO W, YAMADA W, Li T, et al. Augmenting crop detection for precision agriculture with deep visual transfer learning: A case study of bale detection[J]. Remote Sensing, 2021, 13: ID 23. |
4 | SAKO Y, MCDONALD M, FUJIMURA K, et al. A system for automated seed vigour assessment[J]. Seed Science and Technology, 2001, 29(3): 625-636. |
5 | HOFMASTER A, FUJIMURA K, MCDONALD M, et al. An automated system for vigor testing three-day-old soybean seedlings[J]. Seed Science and Technology, 2003, 31(3): 701-713. |
6 | MARCOS-FILHO J, BENNETT M, MCDONALD M, et al. Assessment of melon seed vigour by an automated computer imaging system compared to traditional procedures[J]. Seed Science and Technology, 2006, 34(2): 485-497. |
7 | FORCELLA F, ARNOLD R L B, SANCHEZ R, et al. Modeling seedling emergence[J]. Field Crops Research, 2000, 67(2): 123-139. |
8 | FENG A, ZHOU J, VORIES E, et al. Evaluation of cotton emergence using UAV-based narrow-band spectral imagery with customized image alignment and stitching algorithms[J]. Remote Sensing, 2020, 12(11): ID 1764. |
9 | GNADINGER F, SCHMIDHALTER U. Digital counts of maize plants by unmanned aerial vehicles (UAVs)[J]. Remote sensing, 2017, 9(6): ID 544. |
10 | REUZEAU C, FRANKARD V, HATZEELD Y, et al. Traitmill™: A functional genomics platform for the phenotypic analysis of cereals[J]. Plant Genetic Resources: Characterisation and Utilisation, 2006, 4: 20-24. |
11 | VIRLET N, SABERMANESH K, SADEGHI - TEHRAN P, et al. Field scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring[J]. Functional Plant Biology, 2017, 44(1): 143-153. |
12 | 李寒冰. 基于深度学习的舆情监测系统[D]. 北京: 北京交通大学, 2019. |
LI H. Public opinion monitoring system based on deep learning[D]. Beijing: Beijing Jiaotong University, 2019. | |
13 | 李卫. 深度学习在图像识别中的研究及应用[D]. 武汉: 武汉理工大学, 2014. |
LI W. The research and application of deep learning in image recognition[D]. Wuhan: WuhanUniversity of Technology, 2014. | |
14 | 史璐璐. 深度学习及其在视频目标跟踪中的应用研究[D]. 南京: 南京邮电大学, 2019. |
SHI L. Research on deep learning and its applications in video object tracking[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019. | |
15 | GRINBLAT G L, UZAL L, GLARESE M. Deep learning for plant identification using vein morphological patterns[J]. Computers and Electronics in Agriculture, 2016, 127: 418-424. |
16 | 杨建宇, 周振旭, 杜贞容, 等. 基于SegNet语义模型的高分辨率遥感影像农村建设用地提取[J]. 农业工程学报, 2019, 35(5): 251-258. |
YANG J, ZHOU Z, DU Z, et al. Rural construction land extraction from high spatial resolution remote sensing image based on SegNet semantic segmentation model[J]. Transactions of the CSAE, 2019, 35(5): 251-258. | |
17 | HUMPHREY E J, BELLO J P, LECUN Y. Moving beyond feature design: Deep architectures and automatic feature learning in music informatics[C]// The 13th International Society for Music Information Retrieval Conference. Piscataway, New York, USA: IEEE, 2012: 403-408. |
18 | NANNI L, GHIDONI S, BRAHNAM S. Handcrafted vs. non-handcrafted features for computer vision classification[J]. Pattern Recognition, 2017, 71: 158-172. |
19 | KRIZHEVSKY A. One weird trick for parallelizing convolutional neural networks[EB/OL]. 2014. . |
20 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. 2014. arXiv:1409.1556 [cs.CV]. |
21 | SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2015: 1-9. |
22 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// The IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC, USA: IEEE Computer Society, 2016: 770-778. |
23 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// The IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2016: 779-788. |
24 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// European Conference on Computer Vision. Springer, Cham, Switzerland: 2016: 21-37. |
25 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149. |
26 | MADEC S, JIN X, LU H, et al. Ear density estimation from high resolution RGB imagery using deep learning technique[J]. Agricultural and Forest Meteorology, 2019, 264: 225-234. |
27 | ZOU H, LU H, LI Y, et al. Maize tassels detection: A benchmark of the state of the art[J]. Plant Methods, 2020, 16(1): 1-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||