Smart Agriculture ›› 2020, Vol. 2 ›› Issue (3): 75-85.doi: 10.12133/j.smartag.2020.2.3.202008-SA001
• Topic--Agricultural Artificial Intelligence and Big Data • Previous Articles Next Articles
WEI Jing1(), WANG Yuting1, YUAN Huizhu2, ZHANG Menglei1, WANG Zhenying2
Received:
2020-08-01
Revised:
2020-08-31
Online:
2020-09-30
Published:
2020-12-09
corresponding author:
Yuting WANG,Zhenying WANG
E-mail:jing.wei@senseagro.com
CLC Number:
WEI Jing, WANG Yuting, YUAN Huizhu, ZHANG Menglei, WANG Zhenying. Identification and Morphological Analysis of Adult Spodoptera Frugiperda and Its Close Related Species Using Deep Learning[J]. Smart Agriculture, 2020, 2(3): 75-85.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.smartag.net.cn/EN/10.12133/j.smartag.2020.2.3.202008-SA001
Table 2
Key visual characteristics of 7 species of noctuid moths
物种 | 视觉特征 |
---|---|
草地贪夜蛾(雄虫) | 特征1:环形纹黄褐色,边缘内侧较浅,外侧为黑色至黑褐色; 特征2:肾形纹明显,颜色灰褐色; 特征3:环形纹上方有一个黑褐色至黑色斑纹; 特征4:前翅顶角处有一个较大白色斑纹; 特征5:肾形纹靠前缘脉一侧有一个白斑; 特征6:亚端线白色; 特征7:肾形纹靠臀脉侧白斑可与环形纹相连,渐变为黄褐色 |
棉铃虫 | 特征1:前翅中横线有肾形纹,边褐色,中央深褐色斑; 特征2:环形纹褐边,中央有一个褐色点; 特征3:中横线由肾形纹内侧斜至后缘,末端达环形纹的正下方; 特征4:亚端线的锯齿纹较均匀,距外缘的宽度大致相等。 |
甜菜夜蛾 | 特征1:前翅中央近前缘外方有一个肾形斑; 特征2:内方有一个环形斑 |
斜纹夜蛾 | 特征1:前翅翅基部前半部有白线条数条,内、外横线之间有灰白色宽带,自内横线前缘斜伸至外横线近内缘1/3处; 特征2:灰白色宽带中有2条褐色线纹(雄蛾不显著); 特征3:复杂的黑褐色斑纹; 特征4:翅基部前半部有白线数条 |
粘虫 | 特征1:前翅中央近前缘处有2个淡黄色圆斑; 特征2:外方圆斑下有一个小白点; 特征3:外方圆斑两侧各有一小黑点; 特征4:前翅顶角有一条向后缘的黑色斜纹 |
小地老虎 | 特征1:前翅环形纹黑色,有一个圆灰环; 特征2:肾形纹黑色黑边; 特征3:肾形纹外方有一个黑色楔形黑斑; 特征4:黑边楔状纹; 特征5:亚外缘线上有2个尖端向内的楔形黑斑 |
黄地老虎 | 特征1:前翅环形纹暗褐色黑边,圆形或微呈椭圆形; 特征2:肾形纹棕褐色黑边,较大; 特征3:清晰黑边楔状纹 |
Table 3
Model training strategy and hyper-parameters settings
序号 | 训练策略或超参数 | 设置 |
---|---|---|
1 | 优化器类型 | 随机梯度下降(Stochastic Gradient Descent) |
2 | 学习率调整策略 | 带热重启的随机梯度下降(Stochastic Gradient Descent with Warm Restart)[ |
3 | 学习率退火方式 | 余弦退火(Cosine Annealing)[ |
4 | 基础学习率 | 0.01 |
5 | 动量因子 | 0.9 |
6 | 权重衰减 | 0.0005 |
7 | 批大小 | 32 |
8 | 训练集数据增强策略 | 维持图片宽高比,最短边调整为224像素;中心裁剪224×224像素图像块;随机水平翻转;随机垂直翻转;随机平移;随机旋转;像素值按照ImageNet数据集进行归一化 |
9 | 总训练周期数 | 200 |
Table 5
The comparison of noctuid moths key feature recognition rate of different CNN models
物种 | 特征索引 | 有效样本数/总样本数 | 特征识别率/% | |||||
---|---|---|---|---|---|---|---|---|
DenseNet-121 | ResNet-50 | VGG-16 | ||||||
平衡采样 | 随机洗牌 | 平衡采样 | 随机洗牌 | 平衡采样 | 随机洗牌 | |||
草地贪夜蛾(雄虫) | 1 | 30/30 | 95.0 | 96.7 | 91.7 | 95.0 | 93.3 | 86.7 |
2 | 16/30 | 87.5 | 87.5 | 84.4 | 90.6 | 37.5 | 40.6 | |
3 | 20/30 | 77.5 | 75.0 | 67.5 | 60.0 | 10.0 | 10.0 | |
4 | 26/30 | 30.8 | 23.1 | 40.4 | 42.3 | 3.9 | 0.0 | |
5 | 27/30 | 81.5 | 85.2 | 85.2 | 90.7 | 44.4 | 59.3 | |
6 | 24/30 | 52.1 | 64.6 | 75.0 | 75.0 | 8.3 | 8.3 | |
7 | 29/30 | 96.6 | 96.6 | 100.0 | 98.3 | 65.5 | 63.8 | |
棉铃虫 | 1 | 27/30 | 98.2 | 100.0 | 100.0 | 100.0 | 77.8 | 83.3 |
2 | 24/30 | 97.9 | 100.0 | 95.8 | 93.8 | 68.8 | 87.5 | |
3 | 16/30 | 87.5 | 84.4 | 75.0 | 81.3 | 15.6 | 34.4 | |
4 | 20/30 | 22.5 | 52.5 | 47.5 | 80.0 | 12.5 | 32.5 | |
甜菜夜蛾 | 1 | 29/30 | 89.7 | 86.2 | 94.8 | 87.9 | 13.8 | 25.9 |
2 | 30/30 | 91.7 | 93.3 | 93.3 | 100.0 | 68.3 | 86.7 | |
斜纹夜蛾 | 1 | 30/30 | 100.0 | 100.0 | 100.0 | 100.0 | 96.7 | 98.3 |
2 | 18/30 | 100.0 | 100.0 | 100.0 | 100.0 | 86.1 | 83.3 | |
3 | 30/30 | 100.0 | 100.0 | 98.3 | 100.0 | 26.7 | 41.7 | |
4 | 23/30 | 67.4 | 73.9 | 67.4 | 76.1 | 32.6 | 28.3 | |
粘虫 | 1 | 4/30 | 75.0 | 75.0 | 50.0 | 75.0 | 50.0 | 0.0 |
2 | 30/30 | 95.0 | 98.3 | 95.0 | 95.0 | 86.7 | 96.7 | |
3 | 28/30 | 98.2 | 100.0 | 96.4 | 96.4 | 83.9 | 100.0 | |
4 | 17/30 | 73.5 | 55.9 | 58.8 | 55.9 | 38.2 | 23.5 | |
小地老虎 | 1 | 15/30 | 90.0 | 80.0 | 86.7 | 56.7 | 43.3 | 46.7 |
2 | 27/30 | 100.0 | 96.3 | 96.3 | 85.2 | 90.7 | 85.2 | |
3 | 30/30 | 100.0 | 100.0 | 100.0 | 95.0 | 98.3 | 100.0 | |
4 | 27/30 | 90.7 | 88.9 | 87.0 | 74.1 | 59.3 | 64.8 | |
5 | 24/30 | 95.8 | 95.8 | 93.8 | 95.8 | 31.3 | 54.2 | |
黄地老虎 | 1 | 25/28 | 80.0 | 74.0 | 74.0 | 68.0 | 64.0 | 58.0 |
2 | 26/28 | 92.3 | 96.2 | 92.3 | 94.2 | 80.8 | 84.6 | |
3 | 27/28 | 98.2 | 100.0 | 96.3 | 98.2 | 72.2 | 85.2 | |
特征识别率平均值/% | 85.0 | 85.5 | 84.2 | 84.8 | 53.8 | 57.6 |
1 | 吴孔明. 中国草地贪夜蛾的防控策略[J]. 植物保护, 2020, 46(2): 1-5. |
WU K. Management strategies of fall armyworm (Spodoptera frugiperda) in China[J]. Plant Protection, 2020, 46(2): 1-5. | |
2 | 张磊, 柳贝, 姜玉英, 等. 中国不同地区草地贪夜蛾种群生物型分子特征分析[J]. 植物保护, 2019, 45(4): 20-27. |
ZHANG L, LIU B, JIANG Y, et al. Molecular characterization analysis of fall armyworm populations in China[J]. Plant Protection, 2019, 45(4): 20-27. | |
3 | 赵胜园, 罗倩明, 孙小旭, 等. 草地贪夜蛾与斜纹夜蛾的形态特征和生物学习性比较[J]. 中国植保导刊, 2019, 39(5): 26-35. |
ZHAO S, LUO Q, SUN X, et al. Comparison of morphological and biological characteristics between Spodoptera frugiperda and Spodoptera litura[J]. China Plant Protection, 2019, 39(5): 26-35. | |
4 | MOHANTY S P, HUGHES D P, SALATHÉ M. Using deep learning for image-based plant disease detection[J]. Frontiers in Plant Science, 2016, 7(1419): 1-10. |
5 | CHIWAMBA S H, PHIRI J, NKUNIKA P O Y, et al. An application of machine learning algorithms in automated identification and capturing of fall armyworm (FAW) moths in the field[C]// 2018 Ictsz International Conference In Icts (ICICT). Lusaka, Zambia: ICICT. 2019: 119-124. |
6 | CHULU F, PHIRI J, NKUNIKA P, et al. A convolutional neural network for automatic identification and classification of fall army worm moth[J]. International Journal of Advanced Computer Science and Applications, 2019, 10(7): 112-118. |
7 | 于业达, 顾偌铖, 唐运林, 等. 基于深度学习的草地贪夜蛾自动识别 [J]. 西南大学学报(自然科学版), 2019, 41(9): 24-31. |
YU Y, GU R, TANG Y, et al. A CNN-based automatic identification system for Spodoptera frugiperda[J]. Journal of Southwest University (Natural Science), 2019, 41(9): 24-31. | |
8 | ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks [J]. Nature, 2017, 542(7639): 115-118. |
9 | SPRINGENBERG J T, DOSOVITSKIY A, BROX T, et al. Striving for simplicity: The all convolutional net[C]// 2015 International Conference on Learning Representations (ICLR). San Diego, CA, USA: ICLR. 2015: 1-14. |
10 | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization [C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, New York, USA: IEEE. 2017: 618-626. |
11 | CHATTOPADHYAY A, SARKAR A, HOWLADER P, et al. Grad-CAM++: Generalized gradient-based visual explanations for deep convolutional networks[C]// 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway, New York, USA: IEEE. 2018: 839-847, |
12 | 朱弘复, 陈一心. 中国经济昆虫志[M]. 北京: 科学出版社, 1963: 23-23. |
ZHU H, CHEN Y. Economic insects of China[M]. Beijing: China Science Publishing & Media Ltd., 1963: 23-23. | |
13 | 洪晓月, 丁锦华. 农业昆虫学(第二版)[M]. 北京: 中国农业出版社, 2007: 46-235. |
HONG X, DING J. Agricultural entomology (2nd ed)[M]. Beijing: China Agriculture Press Co., Ltd., 2007: 46-235. | |
14 | 孔德英, 孙涛, 滕少娜, 等. 草地贪夜蛾及其近似种的鉴定[J]. 植物检疫, 2019, 33(4): 37-40. |
KONG D, SUN T, TENG S, et al. Identification of fall armyworm, Spodoptera frugiperda, and its similar species in morphology [J]. Plant Quarantine, 2019, 33(4): 37-40. | |
15 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]// 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), Piscataway. New York, USA: IEEE. 2015, 730-734. |
16 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New York, USA: IEEE. 2016: 770-778. |
17 | HUANG G, LIU Z, MAATEN L V D, et al. Densely connected convolutional networks[C]// 2017 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New York, USA: IEEE. 2017: 2261-2269. |
18 | DENG J, DONG W, SOCHER R, et al. Imagenet: A large-scale hierarchical image database[C]// 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New York, USA: IEEE. 2009: 248-255. |
19 | LOSHCHILOV I, HUTTER F. SGDR: Stochastic gradient descent with warm restarts[C]// 2017 International Conference on Learning Representations (ICLR). Toulon, France: ICLR. 2017: 1-16. |
20 | GOTMARE A, KESKAR N S, XIONG C, et al. A closer look at deep learning heuristics: Learning rate restarts, warmup and distillation[C]// 2019 International Conference on Learning Representations (ICLR). New Orleans, LA, USA: ICLR. 2019: 1-16. |
21 | SMITH L N. Cyclical learning rates for training neural networks[C]// 2017 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway, New York, USA: IEEE. 2015: 464-472. |
22 | ZHOU B, KHOSLA A, LAPEDRIZA, et al. Learning deep features for discriminative localization[C]// 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New York, USA: IEEE. 2016: 2921-2929. |
23 | PARK J, KIM D I, CHOI B, et al. Classification and morphological analysis of vector mosquitoes using deep convolutional neural networks[J]. Scientific Reports, 2020, 10(1): 1-12. |
24 | LI K, WU Z, PENG K, et al. Tell me where to look: guided attention inference network[C]// 2018 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New York, USA: IEEE. 2018:9215-9223. |
[1] | LI Zhijun, YANG Shenghui, SHI Deshuai, LIU Xingxing, ZHENG Yongjun. Yield Estimation Method of Apple Tree Based on Improved Lightweight YOLOv5 [J]. Smart Agriculture, 2021, 3(2): 100-114. |
[2] | FLORES Paulo, ZHANG Zhao. Wheat Lodging Ratio Detection Based on UAS Imagery Coupled with Different Machine Learning and Deep Learning Algorithms [J]. Smart Agriculture, 2021, 3(2): 23-34. |
[3] | QIU Wenjie, YE Jin, HU Liangqing, YANG Juan, LI Qili, MO Jianyou, YI Wanmao. Distilled-MobileNet Model of Convolutional Neural Network Simplified Structure for Plant Disease Recognition [J]. Smart Agriculture, 2021, 3(1): 109-117. |
[4] | LI Liangde, WANG Xiujuan, KANG Mengzhen, HUA Jing, FAN Menghan. Agricultural Named Entity Recognition Based on Semantic Aggregation and Model Distillation [J]. Smart Agriculture, 2021, 3(1): 118-128. |
[5] | GUO Wei, WU Huarui, ZHU Huaji. Design and Application of Facility Greenhouse Image Collecting and Environmental Data Monitoring Robot System [J]. Smart Agriculture, 2020, 2(3): 48-60. |
[6] | LI Hualong, LI Miao, ZHAN Kai, LIU Xianwang, YANG Xuanjiang, HU Zelin, GUO Panpan. Construction Method and Performance Test of Prediction Model for Laying Hen Breeding Environmental Quality Evaluation [J]. Smart Agriculture, 2020, 2(3): 37-47. |
[7] | FLORES Paulo, ZHANG Zhao, MATHEW Jithin, JAHAN Nusrat, STENGER John. Distinguishing Volunteer Corn from Soybean at Seedling Stage Using Images and Machine Learning [J]. Smart Agriculture, 2020, 2(3): 61-74. |
[8] | Zhou Chengquan, Ye Hongbao, Yu Guohong, Hu Jun, Xu Zhifu. A fast extraction method of broccoli phenotype based on machine vision and deep learning [J]. Smart Agriculture, 2020, 2(1): 121-132. |
[9] | Xia Xue, Sun Qixin, Shi Xiao, Chai Xiujuan. Apple detection model based on lightweight anchor-free deep convolutional neural network [J]. Smart Agriculture, 2020, 2(1): 99-110. |
[10] | Wu Huarui. Method of tomato leaf diseases recognition method based on deep residual network [J]. Smart Agriculture, 2019, 1(4): 42-49. |
[11] | Li Miao, Wang Jingxian, Li Hualong, Hu Zelin, Yang XuanJiang, Huang Xiaoping, Zeng Weihui, Zhang Jian, Fang Sisi. Method for identifying crop disease based on CNN and transfer learning [J]. Smart Agriculture, 2019, 1(3): 46-55. |
[12] | Chen Guifen, Zhao Shan, Cao Liying, Fu Siwei, Zhou Jiaxin. Corn plant disease recognition based on migration learning and convolutional neural network [J]. Smart Agriculture, 2019, 1(2): 34-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||