1 | 吴孔明. 中国草地贪夜蛾的防控策略[J]. 植物保护, 2020, 46(2): 1-5. | 1 | WU K. Management strategies of fall armyworm (Spodoptera frugiperda) in China[J]. Plant Protection, 2020, 46(2): 1-5. | 2 | 张磊, 柳贝, 姜玉英, 等. 中国不同地区草地贪夜蛾种群生物型分子特征分析[J]. 植物保护, 2019, 45(4): 20-27. | 2 | ZHANG L, LIU B, JIANG Y, et al. Molecular characterization analysis of fall armyworm populations in China[J]. Plant Protection, 2019, 45(4): 20-27. | 3 | 赵胜园, 罗倩明, 孙小旭, 等. 草地贪夜蛾与斜纹夜蛾的形态特征和生物学习性比较[J]. 中国植保导刊, 2019, 39(5): 26-35. | 3 | ZHAO S, LUO Q, SUN X, et al. Comparison of morphological and biological characteristics between Spodoptera frugiperda and Spodoptera litura[J]. China Plant Protection, 2019, 39(5): 26-35. | 4 | MOHANTY S P, HUGHES D P, SALATHé M. Using deep learning for image-based plant disease detection[J]. Frontiers in Plant Science, 2016, 7(1419): 1-10. | 5 | CHIWAMBA S H, PHIRI J, NKUNIKA P O Y, et al. An application of machine learning algorithms in automated identification and capturing of fall armyworm (FAW) moths in the field[C]// 2018 Ictsz International Conference In Icts (ICICT). Lusaka, Zambia: ICICT. 2019: 119-124. | 6 | CHULU F, PHIRI J, NKUNIKA P, et al. A convolutional neural network for automatic identification and classification of fall army worm moth[J]. International Journal of Advanced Computer Science and Applications, 2019, 10(7): 112-118. | 7 | 于业达, 顾偌铖, 唐运林, 等. 基于深度学习的草地贪夜蛾自动识别 [J]. 西南大学学报(自然科学版), 2019, 41(9): 24-31. | 7 | YU Y, GU R, TANG Y, et al. A CNN-based automatic identification system for Spodoptera frugiperda[J]. Journal of Southwest University (Natural Science), 2019, 41(9): 24-31. | 8 | ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks [J]. Nature, 2017, 542(7639): 115-118. | 9 | SPRINGENBERG J T, DOSOVITSKIY A, BROX T, et al. Striving for simplicity: The all convolutional net[C]// 2015 International Conference on Learning Representations (ICLR). San Diego, CA, USA: ICLR. 2015: 1-14. | 10 | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization [C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, New York, USA: IEEE. 2017: 618-626. | 11 | CHATTOPADHYAY A, SARKAR A, HOWLADER P, et al. Grad-CAM++: Generalized gradient-based visual explanations for deep convolutional networks[C]// 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway, New York, USA: IEEE. 2018: 839-847, | 12 | 朱弘复, 陈一心. 中国经济昆虫志[M]. 北京: 科学出版社, 1963: 23-23. | 12 | ZHU H, CHEN Y. Economic insects of China[M]. Beijing: China Science Publishing & Media Ltd., 1963: 23-23. | 13 | 洪晓月, 丁锦华. 农业昆虫学(第二版)[M]. 北京: 中国农业出版社, 2007: 46-235. | 13 | HONG X, DING J. Agricultural entomology (2nd ed)[M]. Beijing: China Agriculture Press Co., Ltd., 2007: 46-235. | 14 | 孔德英, 孙涛, 滕少娜, 等. 草地贪夜蛾及其近似种的鉴定[J]. 植物检疫, 2019, 33(4): 37-40. | 14 | KONG D, SUN T, TENG S, et al. Identification of fall armyworm, Spodoptera frugiperda, and its similar species in morphology [J]. Plant Quarantine, 2019, 33(4): 37-40. | 15 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]// 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), Piscataway. New York, USA: IEEE. 2015, 730-734. | 16 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New York, USA: IEEE. 2016: 770-778. | 17 | HUANG G, LIU Z, MAATEN L V D, et al. Densely connected convolutional networks[C]// 2017 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New York, USA: IEEE. 2017: 2261-2269. | 18 | DENG J, DONG W, SOCHER R, et al. Imagenet: A large-scale hierarchical image database[C]// 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New York, USA: IEEE. 2009: 248-255. | 19 | LOSHCHILOV I, HUTTER F. SGDR: Stochastic gradient descent with warm restarts[C]// 2017 International Conference on Learning Representations (ICLR). Toulon, France: ICLR. 2017: 1-16. | 20 | GOTMARE A, KESKAR N S, XIONG C, et al. A closer look at deep learning heuristics: Learning rate restarts, warmup and distillation[C]// 2019 International Conference on Learning Representations (ICLR). New Orleans, LA, USA: ICLR. 2019: 1-16. | 21 | SMITH L N. Cyclical learning rates for training neural networks[C]// 2017 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway, New York, USA: IEEE. 2015: 464-472. | 22 | ZHOU B, KHOSLA A, LAPEDRIZA, et al. Learning deep features for discriminative localization[C]// 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New York, USA: IEEE. 2016: 2921-2929. | 23 | PARK J, KIM D I, CHOI B, et al. Classification and morphological analysis of vector mosquitoes using deep convolutional neural networks[J]. Scientific Reports, 2020, 10(1): 1-12. | 24 | LI K, WU Z, PENG K, et al. Tell me where to look: guided attention inference network[C]// 2018 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New York, USA: IEEE. 2018:9215-9223. |
|