1 | ABDALLAH M, DUBOUSSET L, MEURIOT F, et al. Effect of mineral sulphur availability on nitrogen and sulphur uptake and remobilization during the vegetative growth of Brassica napus L[J]. Journal of Experimental Botany, 2010, 61(10): 2635-2646. | 2 | PAO Y, CHEN T, MOUALEU-NGANGUE D, et al. Environmental triggers for photosynthetic protein turnover determine the optimal nitrogen distribution and partitioning in the canopy[J]. Journal of Experimental Botany, 2019, 70(9): 2419-2434. | 3 | HIKOSAKA K. Optimality of nitrogen distribution among leaves in plant canopies[J]. Journal of Plant Research, 2016, 129(3): 299-311. | 4 | ADACHI S, YOSHIKAWA K, YAMANOUCHI U, et al. Fine mapping of carbon assimilation rate 8, a quantitative trait locus for flag leaf nitrogen content, stomatal conductance and photosynthesis in rice[J]. Frontiers in Plant Science, 2017, 8: ID 60. | 5 | 王纪华, 王之杰, 黄文江, 等. 冬小麦冠层氮素的垂直分布及光谱响应[J]. 遥感学报, 2004, 8(4): 309-316. | 5 | WANG J, WANG Z, HUANG W, et al. The vertical distribution characteristic and spectral response of canopy nitrogen in different layer of winter wheat[J]. Journal of Remote Sensing, 2004, 8(4): 309-316. | 6 | 叶晓青, 邹勇, 余志虹, 等. 烤烟冠层光谱参数与氮素垂直分布相关性研究[J]. 农业机械学报, 2013, 44(5): 219-225. | 6 | YE X, ZOU Y, YU Z, et al. Correlation between nitrogen vertical distribution and spectral characteristics of flue-cured tobacco[J]. Transactions of the CSAM, 2013, 44(5): 219-225. | 7 | FENG W, GUO B, WANG Z, et al. Measuring leaf nitrogen concentration in winter wheat using double-peak spectral reflection remote sensing data[J]. Field Crops Research, 2014, 159: 43-52. | 8 | LI F, MISTELE B, HU Y, et al. Remotely estimating aerial N status of phenologically differing winter wheat cultivars grown in contrasting climatic and geographic zones in China and Germany[J]. Field Crops Research, 2012, 138: 21-32. | 9 | STAGAKIS S, MARKOS N, SYKIOTI O, et al. Tracking seasonal changes of leaf and canopy light use efficiency in a Phlomis fruticosa Mediterranean ecosystem using field measurements and multi-angular satellite hyperspectral imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 97: 138-151. | 10 | ZHANG Q, CHEN J M, JU W, et al. Improving the ability of the photochemical reflectance index to track canopy light use efficiency through differentiating sunlit and shaded leaves[J]. Remote Sensing of Environment, 2017, 194:1-15. | 11 | STIRBET A, LAZáR D, GUO Y, et al. Photosynthesis: Basics, history and modelling[J]. Annals of Botany, 2020, 126(4): 511-537. | 12 | GUO Y, TAN J. Recent advances in the application of chlorophyll a fluorescence from photosystem II[J]. Photochemistry and Photobiology, 2015, 91(1): 1-14. | 13 | GUANTER L, ZHANG Y, JUNG M, et al. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence[J]. Proceedings of the National Academy of Sciences, 2014, 111(14): 1327-1333. | 14 | PAPAGEORGIOU G. Chlorophyll a fluorescence: A signature of photosynthesis[M]. Dordrecht: Springer, 2004. | 15 | MAGYAR M, SIPKA G, KOVáCS L, et al. Rate-limiting steps in the dark-to-light transition of Photosystem II-revealed by chlorophyll-a fluorescence induction[J]. Scientific Reports, 2018, 8(1): 1-9. | 16 | SHRESTHA S, BRUECK H and ASCH F. Chlorophyll index, photochemical reflectance index and chlorophyll fluorescence measurements of rice leaves supplied with different N levels[J]. Journal of Photochemistry and Photobiology B: Biology, 2012, 113: 7-13. | 17 | LIU R, WANG Y, CHEN B, et al. Effects of nitrogen levels on photosynthesis and chlorophyll fluorescence characteristics under drought stress in cotton flowering and boll-forming stage[J]. Acta Agronomica Sinica, 2008, 34(4): 675-683. | 18 | FENG W, HE L, ZHANG H-Y, et al. Assessment of plant nitrogen status using chlorophyll fluorescence parameters of the upper leaves in winter wheat[J]. European Journal of Agronomy, 2015, 64: 78-87. | 19 | LARBI A, VáZQUEZ S, EL-JENDOUBI H, et al. Canopy light heterogeneity drives leaf anatomical, eco-physiological, and photosynthetic changes in olive trees grown in a high-density plantation[J]. Photosynthesis Research, 2015, 123(2): 141-155. | 20 | KAUTSKY H, HIRSCH A. Neue versuche zur kohlens?ureassimilation[J]. Naturwissenschaften, 1931, 19(48): 964-964. | 21 | STRASSER R J, TSIMILLI-MICHAEL M, SRIVASTAVA A. Analysis of the chlorophyll a fluorescence transient[M]. Dordrecht: Springer, 2004. | 22 | STIRBET A. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Basics and applications of the OJIP fluorescence transient[J]. Journal of Photochemistry and Photobiology B: Biology, 2011, 104(1-2): 236-257. | 23 | TSIMILLI-MICHAEL M, EGGENBERG P, BIRO B, et al. Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the polyphasic chlorophyll a fluorescence transient OJIP[J]. Applied Soil Ecology, 2000, 15(2): 169-182. | 24 | ABDI H, WILLIAMS L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(4): 433-459. | 25 | HUANG W, YANG Q, PU R, et al. Estimation of nitrogen vertical distribution by bi-directional canopy reflectance in winter wheat[J]. Sensors, 2014, 14(11): 20347-20359. | 26 | MERZLYAK M N, GITELSON A A, CHIVKUNOVA O B, et al. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening[J]. Physiologia Plantarum, 1999, 106(1): 135-141. | 27 | ZHOU X, HUANG W, ZHANG J, et al. A novel combined spectral index for estimating the ratio of carotenoid to chlorophyll content to monitor crop physiological and phenological status[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 76: 128-142. | 28 | DIN? E, CEPPI M G, TóTH S Z, et al. The chl a fluorescence intensity is remarkably insensitive to changes in the chlorophyll content of the leaf as long as the chl a/b ratio remains unaffected[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2012, 1817(5): 770-779. |
|