1 |
吕梦琪, 宋宇杰, 翁海勇, 等. 近红外高光谱成像扫描速度对拟南芥冠层含水率预测的影响[J]. 光谱学与光谱分析, 2020, 40(11): 3508-3514.
|
|
LYU M Q, SONG Y J, WENG H Y, et al. Effect of near infrared hyperspectral imaging scanning speed on prediction of water content in Arabidopsis [J]. Spectroscopy and spectral analysis, 2020, 40(11): 3508-3514.
|
2 |
张金富, 汤斌, 王建旭, 等. 基于近红外光谱的苹果可溶性固形物特征波长筛选建模对比分析[J/OL].激光与光电子学进展. (2022-11-01)[2023-08-12].
|
|
ZHANG J F, TANG B, WANG J X, et al. Comparative analysis of characteristic wavelength screening of apple soluble solids based on near-infrared spectroscopy[J/OL]. Laser & Optoelectronics Progress. (2022-11-01) [2023-08-12].
|
3 |
杨晶晶, 卢俊玮. 光谱技术在花生品质检测中的应用研究进展[J]. 作物研究, 2018, 32(4): 345-348.
|
|
YANG J J, LU J W. Research progress of spectral technology in peanut quality detection[J]. Crop research, 2018, 32(4): 345-348.
|
4 |
孙俊, 金夏明, 毛罕平, 等. 基于高光谱图像的生菜叶片氮素含量预测模型研究[J]. 分析化学, 2014, 42(5): 672-677.
|
|
SUN J, JIN X M, MAO H P, et al. A model for predicting nitrogen of lettuce leaves based on hyperspectral imaging[J]. Chinese journal of analytical chemistry, 2014, 42(5): 672-677.
|
5 |
GAO D H, LI M Z, ZHANG J Y, et al. Improvement of chlorophyll content estimation on maize leaf by vein removal in hyperspectral image[J]. Computers and electronics in agriculture, 2021, 184: ID 106077.
|
6 |
TAN K Z, WANG S W, SONG Y Z, et al. Estimating nitrogen status of rice canopy using hyperspectral reflectance combined with BPSO-SVR in cold region[J]. Chemometrics and intelligent laboratory systems, 2018, 172: 68-79.
|
7 |
SHU M Y, DONG Q Z, FEI S P, et al. Improved estimation of canopy water status in maize using UAV-based digital and hyperspectral images[J]. Computers and electronics in agriculture, 2022, 197: ID 106982.
|
8 |
LICHTENTHALER H K, WELLBURN A R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents[J]. Biochemical society transactions, 1983, 11(5): 591-592.
|
9 |
MASSAOUDI M, REFAAT S S, ABU-RUB H, et al. PLS-CNN-BiLSTM: An end-to-end algorithm-based savitzky-golay smoothing and evolution strategy for load forecasting[J]. Energies, 2020, 13(20): ID 5464.
|
10 |
BAO Y D, KONG W W, LIU F, et al. Detection of glutamic acid in oilseed rape leaves using near infrared spectroscopy and the least squares-support vector machine[J]. International journal of molecular sciences, 2012, 13(11): 14106-14114.
|
11 |
CHEN Q S, JIANG P, ZHAO J W. Measurement of total flavone content in snow lotus (Saussurea involucrate) using near infrared spectroscopy combined with interval PLS and genetic algorithm[J]. Spectrochimica acta part A: Molecular and biomolecular spectroscopy, 2010, 76(1): 50-55.
|
12 |
ARAÚJO M C U, SALDANHA T C B, GALVÃO R K H, et al. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis[J]. Chemometrics and intelligent laboratory systems, 2001, 57(2): 65-73.
|
13 |
ZARCO-TEJADA P J, BERJÓN A, LÓPEZ-LOZANO R, et al. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy[J]. Remote sensing of environment, 2005, 99(3): 271-287.
|
14 |
MEHDAOUI R, ANANE M. Exploitation of the red-edge bands of sentinel 2 to improve the estimation of durum wheat yield in Grombalia region (Northeastern Tunisia)[J]. International journal of remote sensing, 2020, 41(23): 8986-9008.
|
15 |
GITELSON A A, KEYDAN G P, MERZLYAK M N. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves[J]. Geophysical research letters, 2006, 33(11): 431-433.
|
16 |
FITZGERALD G, RODRIGUEZ D, O'LEARY G. Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index: The canopy chlorophyll content index (CCCI)[J]. Field crops research, 2010, 116(3): 318-324.
|
17 |
JORDAN C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology, 1969, 50(4): 663-666.
|
18 |
DASH J, CURRAN P J. The MERIS terrestrial chlorophyll index[J]. International journal of remote sensing, 2004, 25(23): 5403-5413.
|
19 |
GAO B C. NDWI: A normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote sensing of environment, 1996, 58(3): 257-266.
|
20 |
HUNT E R, ROCK B N. Detection of changes in leaf water content using near- and middle-Infrared reflectances[J]. Remote sensing of environment, 1989, 30(1): 43-54.
|
21 |
ZHANG J J, ZHANG W, XIONG S P, et al. Comparison of new hyperspectral index and machine learning models for prediction of winter wheat leaf water content[J]. Plant methods, 2021, 17(1): 1-14.
|
22 |
PENUELAS J, PINOL J, OGAYA R, et al. Estimation of plant water concentration by the reflectance Water Index WI (R900/R970)[J]. International journal of remote sensing, 1997, 18(13): 2869-2875.
|
23 |
ZARCO-TEJADA P J, USTIN S L. Modeling canopy water content for carbon estimates from MODIS data at land EOS validation sites[C]// IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217). Piscataway, New Jersey, USA: IEEE, 2002: 342-344.
|
24 |
SUN H, FENG M C, XIAO L J, et al. Assessment of plant water status in winter wheat (Triticum aestivum L.) based on canopy spectral indices[J]. PLoS one, 2019, 14(6): ID e0216890.
|
25 |
MENZE B.H., KELM B.M., MASUCH R . et al. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data[J]. BMC Bioinformatics, 2009, 10(1): 1-16.
|