1 | 于道德, 宋静静, 叶海斌, 等. 生态理念下对虾健康养殖发展建议[J].生态学杂志, 2021, 40(2): 568-576. | 1 | YU D, SONG J, YE H, et al. Suggestions on the development of healthy shrimp culture under ecological framework[J]. Chinese Journal of Ecology, 2021, 40(2): 568-576. | 2 | 朱林, 车轩, 刘兴国, 等. 简易式工厂化循环水对虾养殖系统构建及试验[J]. 农业工程学报, 2020, 36 (15): 210-216. | 2 | ZHU L, CHE X, LIU X, et al. Construction and experiment of simple industrial recirculating water shrimp culture system[J]. Transactions of the CSAE, 2020, 36(15): 210 -216. | 3 | 吴静, 李振波, 朱玲, 等. 融合ARIMA模型和GAWNN的溶解氧含量预测方法[J].农业机械学报, 2017, 48(S1): 205-210. | 3 | WU J, LI Z, ZHU L, et al. Hybrid model of ARIMA model and GAWNN for dissolved oxygen content prediction[J]. Transactions of the CSAM, 2017, 48(S1): 205-210. | 4 | 陈英义, 程倩倩, 方晓敏, 等. 主成分分析和长短时记忆神经网络预测水产养殖水体溶解氧[J]. 农业工程学报, 2018, 34(17): 183-191. | 4 | CHEN Y, CHENG Q, FANG X, et al. Principal component analysis and long short-term memory neural network for predicting dissolved oxygen in water for aquaculture[J]. Transactions of the CSAE, 2018, 34 (17): 183-191. | 5 | SWETA B, AMBIKA H, MAHESHAWARI J., Simple rapid and on spot dye-based sensor for the detection of Vibrio load in shrimp culture farms[J]. Archives of Clinical Microbiology, 2021 (1): 1-8. | 6 | LIU S, XU L, JIANG Y, et al. A hybrid WA-CPSO-LSSVR model for dissolved oxygen content prediction in crab culture[J]. Engineering Applications of Artificial Intelligence, 2014, 29(3): 114-124. | 7 | 徐龙琴, 陈跃霞, 张军, 等. 基于WA-ABC-WLSSVR的南美白对虾工厂化育苗溶解氧预测模型[J]. 武汉大学学报(工学版), 2017, 50(4): 608-617. | 7 | XU L, CHEN Y, ZHANG J, et al. Prediction model of dissolved oxygen in industrialized vannamei breeding based on wavelet analysis and weighted least squares support vector regression optimized by artificial bee colony algorithm[J]. Engineering Journal of Wuhan University, 2017, 50(4): 608-617. | 8 | HUAN J, LI H, LI M, et al. Prediction of dissolved oxygen in aquaculture based on gradient boosting decision tree and long short-term memory network: A study of Changzhou fishery demonstration base, China[J]. Computers and Electronics in Agriculture, 2020, DOI: 10.1016/j.compag.2020.105530. | 9 | 朱南阳, 吴昊, 尹达恒, 等. 基于长短时记忆网络(LSTM)的蟹塘溶解氧估算优化方法[J]. 智慧农业(中英文), 2019, 1(3): 67-76. | 9 | ZHU N, WU H, YIN D, et al. An improved method for estimating dissolved oxygen in crab ponds based on Long Short-Term Memory[J]. Smart Agriculture, 2019, 1(3): 67-76. | 10 | CAO W, HUAN J, LIU C, et al. A combined model of dissolved oxygen prediction in the pond based on multiple-factor analysis and multi-scale feature extraction[J]. Aquacultural Engineering, 2019, 84: 50-59. | 11 | RAHMAN A, DABROWSKI J, MCCULLOCH J. Dissolved oxygen prediction in prawn ponds from a group of one step predictors[J]. Information Processing in Agriculture, 2020, 7(2): 307-317. | 12 | 施珮, 匡亮, 袁永明, 等. 基于改进极限学习机的水体溶解氧预测方法[J]. 农业工程学报, 2020, 36 (19): 225-232. | 12 | SHI P, KUANG L, YUAN Y, et al. Dissolved oxygen prediction for water quality of aquaculture using improved ELM network[J]. Transactions of the CSAE, 2020, 36(19): 225-232. | 13 | REN Q, WANG X, LI W, et al. Research of dissolved oxygen prediction in recirculating aquaculture systems based on deep belief network[J]. Aquacultural Engineering, 2020, 90: ID 102085. | 14 | LIU Y, ZHANG Q, SONG L, et al. Attention-based recurrent neural networks for accurate short-term and long-term dissolved oxygen prediction[J]. Computers and Electronics in Agriculture, 2019, 165: ID 104964. | 15 | 樊宇星, 任妮, 田港陆, 等. 基于DeepAR-RELM的池塘溶解氧时空预测方法研究[J]. 农业机械学报, 2020, 51(S1): 405-412. | 15 | FAN Y, REN N, TIAN G, et al. Spatio-temporal prediction method of dissolved oxygen in ponds based on DeepAR-RELM[J]. Transactions of the CSAM, 2020, 51(S1): 405-412. | 16 | 饶伟, 杨卫中, 位耀光, 等. 鱼菜共生水体溶解氧时空变化规律及其影响因素研究[J]. 农业机械学报, 2017, 48(S1): 374-380. | 16 | RAO W, YANG W, WEI Y, et al. Temporal and spatial variability of water dissolved oxygen with influence factors in aquaponics system[J]. Transactions of the CSAM, 2017, 48(S1): 374-380. | 17 | 于辉辉. 基于机器学习的池塘养殖水质关键因子预测方法研究[D]. 北京: 中国农业大学, 2017. | 17 | YU H. Research on prediction method of key factors of pond aquaculture water quality based on machine learning[D]. Beijing: China Agricultural University, 2017. | 18 | 胡茑庆, 陈徽鹏, 程哲, 等. 基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法[J]. 机械工程学报, 2019, 55(7): 9-18. | 18 | HU N, CHEN H, CHENG Z, et al. Fault diagnosis for planetary gearbox based on EMD and deep convolutional neural networks[J]. Journal of Mechanical Engineering, 2019, 55(7): 9-18. | 19 | 杨建华, 韩帅, 张帅, 等. 强噪声背景下滚动轴承微弱故障特征信号的经验模态分解[J]. 振动工程学报, 2020, 33(3): 582-589. | 19 | YANG J, HAN S, ZHANG S, et al. Fault diagnosis for planetary gearbox based on EMD and deep convolutional neural networks[J]. Journal of Vibration Engineering, 2020, 33(3): 582-589. | 20 | 刘云, 许自强, 董王英, 等. 基于经验模态分解和长短期记忆神经网络的变压器油中溶解气体浓度预测方法[J]. 中国电机工程学报, 2019, 39(13): 3998-4008. | 20 | LIU Y, XU Z, DONG W, et al. Concentration prediction of dissolved gases in transformer oil based on empirical mode decomposition and long short-term memory neural networks[J]. Proceedings of The Chinese Society for Electrical Engineering, 2019, 39(13): 3998-4008. | 21 | 徐龙琴, 张军, 李乾川, 等. 基于EMD和ELM的工厂化育苗水温组合预测模型[J]. 农业机械学报, 2016, 47(4): 265-271. | 21 | XU L, ZHANG J, LI Q, et al. Combined prediction model of water temperature in industrialized cultivation based on empirical mode decomposition and extreme learning machine[J]. Transactions of the CSAM, 2016, 47(4): 265-271. | 22 | 施珮, 袁永明, 匡亮, 等. 基于EMD-IGA-SELM的池塘养殖水温预测方法[J]. 农业机械学报, 2018, 49 (11): 312-319. | 22 | SI P, YUAN Y, KUANG L, et al. Water temperature prediction in pond aquaculture based on EMD-IGA-SELM neural network[J]. Transactions of the CSAM, 2018, 49(11): 312-319. | 23 | 杨亮, 刘春红, 郭昱辰, 等. 基于EMD-LSTM的猪舍氨气浓度预测研究[J]. 农业机械学报, 2019, 50 (S1): 353-360. | 23 | YANG L, LIU C, GUO Y, et al. Prediction of ammonia concentration in fattening piggery based on EMD-LSTM[J]. Transactions of the CSAM, 2019, 50(S1): 353-360. | 24 | 戴邵武, 陈强强, 刘志豪, 等. 基于EMD-LSTM的时间序列预测方法[J]. 深圳大学学报(理工版), 2020, 37(3): 265-270. | 24 | DAI S, CHEN Q, LIU Z, et al. Time series prediction based on EMD-LSTM model[J]. Journal of Shenzhen University (Science & Engineering), 2020, 37(3): 265-270. | 25 | 赵晓东, 苏公瑾, 李克利, 等. 一种融合EMD分解和LSTM网络的频谱占用度预测模型[J]. 计算机科学, 2020, 47(S1): 294-298. | 25 | ZHAO X, SU G, LI K, et al. Spectrum occupancy prediction model based on EMD decomposition and LSTM networks[J]. Computer Science, 2020, 47(S1): 294-298. | 26 | 秦喜文, 吕思奇, 李巧玲, 等. 利用整体经验模态分解和随机森林的脑电信号分类研究[J]. 中国生物医学工程学报, 2018, 37(6): 665-672. | 26 | QIN X, LYU S, LI Q. Recognition of EEG based on ensemble empirical mode decomposition and random forest[J]. Chinese Journal of Biomedical Engineering, 2018, 37(6): 665-672. | 27 | ANNA C, SALAH S, BRETT W. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review[J]. Computers and Electronics in Agriculture, 2018, 151: 61-69. | 28 | DHIVYA E, DURAI R, VISHAL S, et al. Forecasting yield by integrating agrarian factors and machine learning models: A survey[J]. Computers and Electronics in Agriculture, 2018, 155: 257-282. | 29 | 刘峻明, 和晓彤, 王鹏新, 等. 长时间序列气象数据结合随机森林法早期预测冬小麦产量[J]. 农业工程学报, 2019, 35(6): 158-166. | 29 | LIU J, HE X, WANG P, et al. Early prediction of winter wheat yield with long time series meteorological data and random forest method[J]. Transactions of the CSAE, 2019, 35(6): 158-166. | 30 | 陈英义, 方晓敏, 梅思远, 等. 基于WT-CNN-LSTM的溶解氧含量预测模型[J]. 农业机械学报, 2020, 51(10): 284-291. | 30 | CHEN Y, FANG X, MEI S, et al. Principal component analysis and long short-term memory neural network for predicting dissolved oxygen in water for aquaculture[J]. Transactions of the CSAM, 2020, 51(10): 284-291. | 31 | 金秀章, 刘岳, 于静, 等. 基于变量选择和EMD-LSTM网络的出口SO2浓度预测[J/OL]. 中国电机工程学报, (2021-04-19). . | 31 | JIN X, LIU Y, YU J, et al. Prediction of outlet SO2 concentration based on variable selection and EMD-LSTM[J/OL]. Proceedings of The Chinese Society for Electrical Engineering, (2021-04-19). . |
|