1 |
姚冠新, 杨妍, 徐静, 等. 新冠疫情背景下农产品物流需求预测——以兴化市为例[J]. 物流科技, 2021, 44(9): 91-95.
|
|
YAO G X, YANG Y, XU J, et al. Forecasting of logistics demand for agricultural products under the background of COVID-19—A case study of Xinghua city[J]. Logistics sci-tech, 2021, 44(9): 91-95.
|
2 |
张继良. 基于组合模型的山东生鲜农产品物流需求预测[D]. 济南: 山东大学, 2021.
|
|
ZHANG J L. Logistics demand forecast of fresh agricultural products in Shandong province based on combination model[D]. Jinan: Shandong University, 2021.
|
3 |
王晓平, 闫飞. 基于GA-BP模型的北京城镇农产品冷链物流需求预测[J]. 数学的实践与认识, 2019, 49(21): 17-27.
|
|
WANG X P, YAN F. Prediction of cold chain logistics demand for agricultural products in Beijing based on GA-BP model[J]. Mathematics in practice and theory, 2019, 49(21): 17-27.
|
4 |
SHYLA M K, SHIVA K K, KUMAR D R. Image steganography using genetic algorithm for cover image selection and embedding[J]. Soft computing letters, 2021, 3: ID 100021.
|
5 |
皇甫红姣. 绵阳市生鲜农产品冷链物流需求预测研究[D]. 绵阳: 西南科技大学, 2021.
|
|
HUANGFU H J. Research on cold chain logistics demand forecast of fresh agricultural products in Mianyang city[D]. Mianyang: Southwest University of Science and Technology, 2021.
|
6 |
刘文博. 辽宁省生鲜农产品冷链物流需求预测研究[J]. 全国流通经济, 2022(4): 11-13.
|
|
LIU W B. Research on demand forecast of cold chain logistics of fresh agricultural products in Liaoning province[J]. China circulation economy, 2022(4): 11-13.
|
7 |
WANG M, LI X. Demand forecasting of agricultural cold chain logistics based on metabolic GM (1,1) model[J]. IOP conference series: Earth and environmental science, 2021, 831(1): ID 012018.
|
8 |
HUANG L, XIE G, ZHAO W, et al. Regional logistics demand forecasting: A BP neural network approach[J]. Complex & Intelligent Systems, 2021: 1-16.
|
9 |
徐晓燕, 杨慧敏, 吕修凯, 等. 基于山东省不同模型的物流需求预测比较研究[J]. 包装工程, 2022, 43(23): 207-215.
|
|
XU X Y, YANG H M, LYU X K, et al. Comparative research on forecast of logistics demand in Shandong Province based on different models[J]. Packaging engineering, 2022, 43(23): 207-215.
|
10 |
VAN DER LAAN E, VAN DALEN J, ROHRMOSER M, et al. Demand forecasting and order planning for humanitarian logistics: An empirical assessment[J]. Journal of operations management, 2016, 45: 114-122.
|
11 |
LU B, PARK N. A study on model of regional logistics requirements prediction[J]. Journal of Korean navigation and port research, 2012, 36: 553-559.
|
12 |
BAISARIYEV M, BAKYTZHANULY A, SERIK Y, et al. Demand forecasting methods for spare parts logistics for aviation: A real-world implementation of the Bootstrap method[J]. Procedia manufacturing, 2021, 55: 500-506.
|
13 |
ZENG M L, LIU R M, GAO M, et al. Demand forecasting for rural E-commerce logistics: A gray prediction model based on weakening buffer operator[J]. 2022, 2022: ID 3395757.
|
14 |
ANSHUKA A, CHANDRA R, BUZACOTT A J V, et al. Spatio temporal hydrological extreme forecasting framework using LSTM deep learning model[J]. Stochastic environmental research and risk assessment, 2022, 36(10): 3467-3485.
|
15 |
LIU J J, YUAN X, ZENG J H, et al. Ensemble streamflow forecasting over a cascade reservoir catchment with integrated hydrometeorological modeling and machine learning[J]. Hydrology and earth system sciences, 2021, 26(2): 265-278.
|
16 |
XU C W, WANG Y Z, FU H, et al. Comprehensive analysis for long-term hydrological simulation by deep learning techniques and remote sensing[J]. Frontiers in earth science, 2022, 10: ID 875145.
|
17 |
DU S D, LI T R, YANG Y, et al. Deep air quality forecasting using hybrid deep learning framework[J/OL]. arXiv: , 2018.
|
18 |
JANARTHANAN R, PARTHEEBAN P, SOMASUNDARAM K, et al. A deep learning approach for prediction of air quality index in a metropolitan city[J]. Sustainable cities and society, 2021, 67: ID 102720.
|
19 |
PENG J H, CAO H L, ALI Z, et al. Intelligent reflecting surface-assisted interference mitigation with deep reinforcement learning for radio astronomy[J]. IEEE antennas and wireless propagation letters, 2022, 21(9): 1757-1761.
|
20 |
SEDAGHAT N, ROMANIELLO M, CARRICK J E, et al. Machines learn to infer stellar parameters just by looking at a large number of spectra[J]. Monthly notices of the Royal Astronomical Society, 2021, 501(4): 6026-6041.
|
21 |
LIU H L, LIN P, ZHENG W P, et al. A global eddy-resolving ocean forecast system in China-LICOM Forecast System (LFS)[J]. Journal of operational oceanography, 2021, 16(1): 15-27.
|
22 |
ZHU X M, ZU Z Q, REN S H, et al. Improvements in the regional South China Sea operational oceanography forecasting system (SCSOFSv2)[J]. Geoscientific model development, 2022, 15(3): 995-1015.
|
23 |
综合百科[EB/OL]. (2020-10-29)[2023-01-30]. .
|
24 |
ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[J/OL]. arXiv:2012.07436 [cs.LG], 2020.
|
25 |
宋勇, 蔡志平. 大数据环境下基于信息论的入侵检测数据归一化方法[J]. 武汉大学学报(理学版), 2018, 64(2): 121-126.
|
|
SONG Y, CAI Z P. Normalized method of intrusion detection data based on information theory in big data environment[J]. Journal of Wuhan university (natural science edition), 2018, 64(2): 121-126.
|