1 |
农业农村部市场预警专家委员会. 中国农业展望报告(2021—2030)[M]. 北京: 中国农业科学技术出版社, 2021.
|
2 |
许世卫, 邸佳颖, 李干琼, 等. 农产品监测预警模型集群构建理论方法与应用[J]. 中国农业科学, 2020, 53(14): 2859-2871.
|
|
XU S, DI J, Li G, et al. The methodology and application of agricultural monitoring and early warning model cluster[J]. Scientia Agricultura Sinica, 2020, 53(14): 2859-2871.
|
3 |
ZHUANG J, XU S, LI G, et al. The influence of meteorological factors on wheat and rice yields in China[J]. Crop Science, 2018, 58(3): 837-852.
|
4 |
LAUDIEN R, SCHAUBERGER B, MAKOWSKI D, et al. Robustly forecasting maize yields in Tanzania based on climatic predictors[J]. Scientific Reports, 2020, 10: ID 19650.
|
5 |
JOHNSON M D, HSIEH W W, CANNON A J, et al. Crop yield forecasting on the Canadian Prairies by remotely sensed vegetation indices and machine learning methods[J]. Agricultural and Forest Meteorology, 2016, 218-219: 74-84.
|
6 |
EUGENIO F C E, GROHS M, VENANCIO L P, et al. Estimation of soybean yield from machine learning techniques and multispectral RPAS imagery[J]. Remote Sensing Applications, 2020: ID 100397.
|
7 |
PAUDEL D, BOOGAARD H, DE WIT A, et al. Machine learning for large-scale crop yield forecasting[J]. Agricultural Systems, 2020, 187: ID 103016.
|
8 |
DE WITA, BOOGAARD H, FUMAGALLI D, et al. 25 years of the WOFOST cropping systems model[J]. Agricultural Systems, 2019, 168: 154-167.
|
9 |
MASUDA, TADAYOSHI, GOLDSMITH, et al. World soybean production: Area harvested, yield, and long-term projections[J]. International Food & Agribusiness Management Review, 2009, 12(4): 143-161.
|
10 |
王桂芝, 胡慧, 陈纪波, 等. 基于BP 滤波的Fourier 模型在粮食产量预测中的应用[J]. 中国农业气象, 2015, 36(4): 472-478.
|
|
WANG G, HU H, CHEN J, et al. Application of Fourier model based on BP filter in crops yield prediction[J]. Chinese Journal of Agrometeorology, 2015, 36(4): 472-478.
|
11 |
肖玉, 成升魁, 谢高地, 等. 我国主要粮食品种供给与消费平衡分析[J]. 自然资源学报, 2017, 32(6): 927-936.
|
|
XIAO Y, CHENG S, XIE G, et al. The balance between supply and consumption of the main types of grain in China[J]. Journal of Natural Resources, 2017, 32(6): 927-936.
|
12 |
谢高地, 成升魁, 肖玉, 等. 新时期中国粮食供需平衡态势及粮食安全观的重构[J]. 自然资源学报, 2017, 32(6): 895-903.
|
|
XIE G, CHENG S, XIAO Y, et al. The balance between grain supply and demand and the reconstruction of China's food security strategy in the new period[J]. Journal of Natural Resources, 2017, 32(6): 895-903.
|
13 |
赵萱, 邵一珊. 我国粮食供需的分析与预测[J]. 农业现代化研究, 2014, 35(3): 277-280.
|
|
ZHAO X, SHAO Y. Analysis and forecast of China's grain supply and demand[J]. Research of Agricultural Modernization, 2014, 35(3): 277-280.
|
14 |
刘洋, 罗其友, 周振亚, 等. 我国主要农产品供需分析与预测[J]. 中国工程科学, 2018, 20(5): 120-127.
|
|
LIU Y, LUO Q, ZHOU Z, et al. Analysis and prediction of the supply and demand of China's major agricultural products[J]. Strategic Study of CAE, 2018, 20(5): 120-127.
|
15 |
LU W, NING L C, WEN X Q. Modeling the effects of urbanization on grain production and consumption in China[J]. Journal of Integrative Agriculture, 2017, 16(6): 1393-1405.
|
16 |
黄季焜. 对近期与中长期中国粮食安全的再认识[J]. 农业经济问题, 2021(1): 19-26.
|
|
HUANG J. Recognition of recent and mid-long term food security in China[J]. Issues in Agricultural Economy, 2021(1): 19-26.
|
17 |
陈锡康, 杨翠红. 农业复杂巨系统的特点与全国粮食产量预测研究[J]. 系统工程理论与实践, 2002(6): 108-112.
|
|
CHEN X, YANG C. Characteristic of agricultural complex giant system and national grain output prediction[J]. Systems Engineering-Theory & Practice, 2002(6): 108-112.
|
18 |
许世卫. 农业信息分析学[M]. 北京: 高等教育出版社, 2013.
|
19 |
高亮之. 农业模型学[M]. 北京: 气象出版社, 2019.
|
20 |
王盈旭, 韩红桂, 郭民. 一种基于改进型深度学习的非线性建模方法[J]. 信息与控制, 2018, 47(6): 680-686.
|
|
WANG Y, HAN H, GUO M. A nonlinear modeling method based on improved deep learning[J]. Information and Control, 2018, 47(6): 680-686.
|
21 |
DELÉGLISE H, INTERDONATO R, BÉGUÉ A, et al. Food security prediction from heterogeneous data combining machine and deep learning methods[J]. Expert Systems with Applications, 2022, 190: ID 116189.
|
22 |
EMERSON R A, DOS REIS J G M, VENDRAMETTO O, et al. Time series prediction with artificial neural networks: An analysis using Brazilian soybean production[J]. Agriculture (Basel), 2020, 10(10): ID 475.
|
23 |
SCHWALBERT R A, AMADO T, CORASSA G, et al. Satellite-based soybean yield forecast: Integrating machine learning and weather data for improving crop yield prediction in southern brazil[J]. Agricultural and Forest Meteorology, 2020, 284: ID 107886.
|
24 |
SHAHHOSSEINI M, HU G, HUBER I, et al. Coupling machine learning and crop modeling improves crop yield prediction in the US corn belt[J]. Scientific Reports, Scientific Reports, 2021, 11(1): 1-15.
|
25 |
BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2): 157-166.
|