1 | GORJI T, SERTEL E, TANIK A. Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey[J]. Ecological Indicators, 2017, 74: 384-391. | 2 | METTERNICHT G I, ZINCK J A. Remote sensing of soil salinity: Potentials and constraints[J]. Remote Sensing of Environment, 2003, 85(1): 1-20. | 3 | 王建华, 胡鹏, 龚家国. 实施黄河口大保护 推动黄河流域生态文明建设[J]. 人民黄河, 2019, 41(10): 7-10. | 3 | WANG J, HU P, GONG J. Implementing the Great Protection of the Yellow River Estuary and promoting the construction of ecological civilization in the Yellow River basin [J]. People's Yellow River, 2019, 41(10): 7-10. | 4 | 刘丽娟, 李小玉. 干旱区土壤盐分积累过程研究进展[J]. 生态学杂志, 2019, 38(3): 891-898. | 4 | LIU L, LI X. Research progress on soil salt accumulation process in arid areas[J]. Journal of Ecology, 2019, 38(3): 891-898. | 5 | 丁建丽, 姚远, 王飞. 干旱区土壤盐渍化特征空间建模[J]. 生态学报, 2014, 34(16): 4620-4631. | 5 | DING J, YAO Y, WANG F. Spatial modeling of soil salinization characteristics in arid areas[J]. Journal of Ecology, 2014, 34(16): 4620-4631. | 6 | WANG J, DING J, YU D, et al. Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI[J]. Science of the Total Environment, 2020, 707: ID 136092. | 7 | 孙亚楠, 李仙岳, 史海滨, 等. 基于多源数据融合的盐分遥感反演与季节差异性研究[J]. 农业机械学报, 2020, 51(06): 169-180. | 7 | SUN Y, LI X, SHI H, et al. Remote sensing retrieval of salinity and seasonal differences based on multi-source data fusion[J]. Transactions of the CSAM, 2020, 51(6): 169-180. | 8 | HU J, PENG J, ZHOU Y, et al. Quantitative estimation of soil salinity using uav-borne hyperspectral and satellite multispectral images[J]. Remote Sensing, 2019, 11(7): ID 726. | 9 | 奚雪, 赵庚星, 高鹏, 等. 基于Sentinel卫星及无人机多光谱的滨海冬小麦种植区土壤盐分反演研究——以黄三角垦利区为例[J]. 中国农业科学, 2020, 53(24): 5005-5016. | 9 | XI X, ZHAO G, GAO P, et al. Inversion of soil salinity in coastal winter wheat planting area based on Sentinel satellite and UAV multi spectrum-Taking the reclamation area in the Yellow River Delta as an example[J]. China Agricultural Sciences, 2020, 53(24): 5005-5016. | 10 | 贾吉超, 赵庚星, 高明秀, 等. 黄河三角洲典型区域冬小麦播种面积变化与土壤盐分关系研究[J]. 植物营养与肥料学报, 2015, 21(5): 1200-1208. | 10 | JIA J, ZHAO G, GAO M, et al. Study on the relationship between the change of winter wheat sowing area and soil salinity in typical regions of the Yellow River Delta[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(5): 1200-1208. | 11 | 黄权中, 徐旭, 吕玲娇, 等. 基于遥感反演河套灌区土壤盐分分布及对作物生长的影响[J]. 农业工程学报, 2018, 34(1): 102-109. | 11 | HUANG Q, XU X, LYU L, et al. Inversion of soil salt distribution and its impact on crop growth in Hetao irrigation area based on remote sensing [J]. Transactions of the CSAE, 2018, 34(1): 102-109. | 12 | 杨宁, 崔文轩, 张智韬, 等. 无人机多光谱遥感反演不同深度土壤盐分[J]. 农业工程学报, 2020, 36(22): 13-21. | 12 | YANG N, CUI W, ZHANG Z, et al. Inversion of soil salinity at different depths by UAV multispectral remote sensing[J]. Transactions of the CSAE, 2020, 36(22): 13-21. | 13 | 黄静, 赵庚星, 奚雪, 等. 光谱与纹理信息结合的黄河三角洲土壤盐渍化信息提取——以垦利区为例[J]. 农业资源与环境学报, 2022, 39(3): 594-601. | 13 | HUANG J, ZHAO G, XI X, et al. Extraction of soil salinization information in the Yellow River Delta based on the combination of spectral and texture information -Taking reclamation area as an example[J]. Journal of Agricultural Resources and Environment, 2022, 39(3): 594-601. | 14 | 台翔. 植被覆盖条件下的无人机多光谱遥感土壤含盐量监测模型[D]. 杨凌: 西北农林科技大学, 2022. | 14 | TAI X. Monitoring model of soil salt content by UAV multi spectral remote sensing under vegetation coverage[D]. Yangling: Northwest Agricultural and Forestry University, 2022. | 15 | 高焕君. 衡水湖周边土壤中全盐量、碳酸根、碳酸氢根及氯离子含量的测定[J]. 安徽化工, 2021, 47(5): 96-98. | 15 | GAO H. Determination of total salt content, carbonate, bicarbonate and chloride ion content in soil around Hengshui Lake[J]. Anhui Chemical Industry, 2021, 47 (5): 96-98. | 16 | ROUSE J W, HAAS JR R H, SCHELL J A, et al. Monitoring vegetation systems in the Great Plains with ERTS[C]// Goddard Space Flight Center 3d ERTS-1 Symphony. Washington DC, USA: NASA, 1974: 309-317. | 17 | HUETE A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988, 25: 295-309. | 18 | GONG P, PU R, G.SBIGING, et al. Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41: 1355-1362. | 19 | CAO Q, MIAO Y, WANG H, et al. Non-destructive estimation of rice plant nitrogen status with crop circle multispectral active canopy sensor[J]. Field Crops Research, 2013, 154: 133-144. | 20 | LU J, MIAO Y, SHI W, et al. Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using portable RapidSCAN active canopy sensor[J]. Scientific Reports. 2017, 7: ID 14073. | 21 | JORDAN C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology, 1969, 50: 663-666. | 22 | REYNIERS M, WALVOORT D J, DE BAARDEMAAKER J. A linear model to predict with a multi-spectral radiometer the amount of nitrogen in winter wheat[J]. International Journal of Remote Sensing, 2006, 27, 4159-4179. | 23 | ALLBED A, KUMAR L, ALDAKHEEL Y Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region[J]. Geoderma, 2014, 230: 1-8. | 24 | HARALICK ROBERT M, SHANMUGAM K, ITS'HAK D. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, SMC-3(6): 610-621. | 25 | 邓远立, 卢伟. 基于灰度共生矩阵的震后倒塌房屋遥感信息提取——以2014年云南鲁甸6.5级地震为例[J]. 华南地震, 2019, 39(2): 100-111. | 25 | DENG Y, LU W. Remote sensing information extraction of collapsed houses after earthquakes based on gray level co-occurrence matrix—Taking the 2014 Ludian earthquake of magnitude 6.5 in Yunnan as an example[J]. South China Earthquake, 2019, 39(2): 100-111. | 26 | 刘国旗. 多重共线性的产生原因及其诊断处理[J]. 合肥工业大学学报(自然科学版), 2001(4): 607-610. | 26 | LIU G. The causes of multicollinearity and its diagnosis and treatment[J]. Journal of Hefei University of Technology (Natural Science Edition), 2001(4): 607-610. | 27 | 杨丽萍, 任杰, 王宇, 等. 基于多源遥感数据的居延泽地区土壤盐分估算模型[J]. 农业机械学报, 2022, 53(11): 226-235. | 27 | YANG L, REN J, WANG Y, et al. Estimation model of soil salinity in Juyanze area based on multi-source remote sensing data[J]. Transactions of the CSAM, 2022, 53(11): 226-235. | 28 | 王建雯, 李振海, 朱红春, 等. 基于野外实测高光谱数据的盐碱土盐分含量估测研究[J]. 山东科技大学学报(自然科学版), 2017, 36(3): 17-24. | 28 | WANG J, LI Z, ZHU H, et al. Research on estimation of salt content in saline alkali soil based on field measured hyperspectral data[J]. Journal of Shandong University of Science and Technology (Natural Science Edition), 2017, 36(3): 17-24. | 29 | 翁永玲, 宫鹏. 土壤盐渍化遥感应用研究进展[J]. 地理科学, 2006(3): 369-375. | 29 | WENG Y, GONG P. Progress in the application of remote sensing to soil salinization[J]. Geographic Science, 2006(3): 369-375. | 30 | 杨丽萍, 任杰, 王宇, 等. 基于多源遥感数据的居延泽地区土壤盐分估算模型[J/OL]. 农业机械学报: 1-14.[2022-11-10]. . | 30 | YANG L, REN J, WANG Y, et al. Estimation model of soil salinity in Juyanze area based on multi-source remote sensing data[J/OL]. Transactions of the CSAM. 1-14. [2022-11-10]. . | 31 | 曹肖奕, 丁建丽, 葛翔宇, 等. 基于光谱指数与机器学习算法的土壤电导率估算研究[J]. 土壤学报, 2020, 57(4): 867-877. | 31 | CAO X, DING J, GE X, et al. Estimation of soil conductivity based on spectral index and machine learning algorithm[J]. Journal of Soil Science, 2020, 57(4): 867-877. | 32 | 郭斌, 白昊睿, 张波, 等. 基于RF和连续小波变换的露天煤矿土壤锌含量高光谱遥感反演[J]. 农业工程学报, 2022, 38(10): 138-147. | 32 | GUO B, BAI H, ZHANG B, et al. Hyperspectral remote sensing inversion of soil zinc content in open pit coal mine based on rf and continuous wavelet transform[J]. Transactions of the CSAE, 2022, 38(10): 138-147. |
|