1 |
OSCO L P, MARCATO J, MARQUES RAMOS A P, et al. A review on deep learning in UAV remote sensing[J]. International journal of applied earth observation and geoinformation, 2021, 102: ID 102456.
|
2 |
PEYGHAMBARI S, ZHANG Y. Hyperspectral remote sensing in lithological mapping, mineral exploration, and environmental geology: An updated review[J]. Journal of applied remote sensing, 2021, 15(3): ID 031501.
|
3 |
WOOSTER M J, ROBERTS G J, GIGLIO L, et al. Satellite remote sensing of active fires: History and current status, applications and future requirements[J]. Remote sensing of environment, 2021, 267: ID 112694.
|
4 |
ZHANG H D, WANG L Q, TIAN T, et al. A review of unmanned aerial vehicle low-altitude remote sensing (UAV-LARS) use in agricultural monitoring in China[J]. Remote sensing, 2021, 13(6): ID 1221.
|
5 |
MA X F, WANG Q M, TONG X H. A spectral grouping-based deep learning model for haze removal of hyperspectral images[J]. ISPRS journal of photogrammetry and remote sensing, 2022, 188: 177-189.
|
6 |
HE J, YUAN Q Q, LI J, et al. A self-supervised remote sensing image fusion framework with dual-stage self-learning and spectral super-resolution injection[J]. ISPRS journal of photogrammetry and remote sensing, 2023, 204: 131-144.
|
7 |
HE J, LI J, YUAN Q Q, et al. Spectral response function-guided deep optimization-driven network for spectral super-resolution[J]. IEEE transactions on neural networks and learning systems, 33(9): 4213-4227.
|
8 |
张圆, 孔祥思, 张烁, 等. 深度学习技术在遥感影像滑坡识别中的应用[J]. 北京测绘, 2022, 36(10): 1385-1390.
|
|
ZHANG Y, KONG X S, ZHANG S, et al. Application of deep learning technology in remote sensing image landslide identification[J]. Beijing surveying and mapping, 2022, 36(10): 1385-1390.
|
9 |
孙志军, 薛磊, 许阳明, 等. 深度学习研究综述[J]. 计算机应用研究, 2012, 29(8): 2806-2810.
|
|
SUN Z J, XUE L, XU Y M, et al. Overview of deep learning[J]. Application research of computers, 2012, 29(8): 2806-2810.
|
10 |
DUAN Y L, LUO F L, FU M X, et al. Classification via structure-preserved hypergraph convolution network for hyperspectral image[J]. IEEE transactions on geoscience and remote sensing, 2023, 61: 1-13.
|
11 |
LUO F L, ZHOU T Y, LIU J M, et al. Multiscale diff-changed feature fusion network for hyperspectral image change detection[J]. IEEE transactions on geoscience and remote sensing, 2023, 61: 1-13.
|
12 |
GU Z Q, ZHAN Z Q, YUAN Q Q, et al. Single remote sensing image dehazing using a prior-based dense attentive network[J]. Remote sensing, 2019, 11(24): ID 3008.
|
13 |
HU A N, XIE Z, XU Y Y, et al. Unsupervised haze removal for high-resolution optical remote-sensing images based on improved generative adversarial networks[J]. Remote sensing, 2020, 12(24): ID 4162.
|
14 |
JIANG B, CHEN G T, WANG J S, et al. Deep dehazing network for remote sensing image with non-uniform haze[J]. Remote sensing, 2021, 13(21): ID 4443.
|
15 |
邱雨珉, 郭剑辉, 楼根铨, 等. 结合小波变换和注意力机制的U-NET图像去雾算法[J]. 计算机与数字工程, 2024, 52(6): 1859-1863.
|
|
QIU Y M, GUO J H, LOU G Q, et al. U-NET image dehazing algorithm combining wavelet transform and attention mechanism[J]. Computer & digital engineering, 2024, 52(6): 1859-1863.
|
16 |
李玉峰, 任静波, 黄煜峰. 基于深度学习的遥感图像去雾算法[J]. 计算机应用研究, 2021, 38(7): 2194-2199.
|
|
LI Y F, REN J B, HUANG Y F. Remote sensing image haze removal algorithm using deep learning[J]. Application research of computers, 2021, 38(7): 2194-2199.
|
17 |
王梦瑶, 孟祥超, 邵枫, 等. 基于深度学习的SAR辅助下光学遥感图像去云方法[J]. 光学学报, 2021, 41(12): 1228002.
|
|
WANG M Y, MENG X C, SHAO F, et al. SAR-assisted optical remote sensing image cloud removal method based on deep learning[J]. Acta optica sinica, 2021, 41(12): ID 1228002.
|
18 |
任欢, 王旭光. 注意力机制综述[J]. 计算机应用, 2021, 41(S1): 1-6.
|
|
REN H, WANG X G. Review of attention mechanism[J]. Journal of computer applications, 2021, 41(S1): 1-6.
|
19 |
吴胜垚, 陈星. 图像任务中空间和通道注意力机制研究综述[J/OL]. 微电子学与计算机, 2024: 1-13. (2024-05-09).
|
|
WU S Y, CHEN X. A review of the spatial and channel attention mechanisms in image tasks [J/OL]. Microelectronics & computer, 2024: 1-13. (2024-05-09).
|
20 |
杨云, 杨欣悦, 张小璇. 基于注意力机制的生成对抗网络图像超分辨重建[J]. 陕西科技大学学报, 2024, 42(2): 216-223, 232.
|
|
YANG Y, YANG X Y, ZHANG X X. Generative adversarial network image super-resolution reconstruction based on attention mechanism[J]. Journal of Shaanxi university of science & technology, 2024, 42(2): 216-223, 232.
|
21 |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 42(8): 2011-2023.
|
22 |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional Block attention module[C]// Computer Vision – ECCV 2018. Cham, Germany: Springer International Publishing, 2018: 3-19.
|
23 |
HAO Y, JIANG W Z, LIU W F, et al. Dynamic feature attention network for remote sensing image dehazing[J]. Neural processing letters, 2023, 55(6): 8081-8094.
|
24 |
WANG Q L, WU B G, ZHU P F, et al. ECA-net: Efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020. Seattle, WA, USA. Piscataway, New Jersey, USA: IEEE, 2020: 11534-11542.
|
25 |
KOURMOULI G, KOSTAGIOLAS N, NICOLAOU M A, et al. Locality-preserving directions for interpreting the latent space of satellite image GANs[J]. IEEE geoscience and remote sensing letters, 2024, 21: 1-5.
|