| 1 | 
																						 
											  陆宴辉, 赵紫华, 蔡晓明, 等. 我国农业害虫综合防治研究进展[J]. 应用昆虫学报, 2017, 54(3): 349-363. 
											 											 | 
										
																													
																						 | 
																						 
											   LU Y H,  ZHAO Z H,  CAI X M, et al. Progresses on integrated pest management (IPM) of agricultural insect pests in China[J]. Chinese journal of applied entomology, 2017, 54(3): 349-363. 
											 											 | 
										
																													
																						| 2 | 
																						 
											   NGUGI L C,  ABELWAHAB M,  ABO-ZAHHAD M. Recent advances in image processing techniques for automated leaf pest and disease recognition: A review[J]. Information processing in agriculture, 2021, 8(1): 27-51. 
											 											 | 
										
																													
																						| 3 | 
																						 
											  郑果, 姜玉松, 沈永林. 基于改进YOLOv7的水稻害虫识别方法[J]. 华中农业大学学报, 2023, 42(3): 143-151. 
											 											 | 
										
																													
																						 | 
																						 
											   ZHENG G,  JIANG Y S,  SHEN Y L. Recognition of rice pests based on improved YOLOv7[J]. Journal of Huazhong agricultural university, 2023, 42(3): 143-151. 
											 											 | 
										
																													
																						| 4 | 
																						 
											  吴杰, 施磊, 张志安. 基于深度学习的害虫图像识别与分类方法研究[J]. 计算技术与自动化, 2023, 42(1): 166-173. 
											 											 | 
										
																													
																						 | 
																						 
											   WU J,  SHI L,  ZHANG Z A. Research on recognition and classification method of pest images based on deep learning[J]. Computing technology and automation, 2023, 42(1): 166-173. 
											 											 | 
										
																													
																						| 5 | 
																						 
											   TANG Z,  CHEN Z,  QI F, et al. Pest-YOLO: Deep image mining and multi-feature fusion for real-time agriculture pest detection[C]// 2021 IEEE International Conference on Data Mining (ICDM). Piscataway, New Jersey, USA: IEEE, 2021: 1348-1353. 
											 											 | 
										
																													
																						| 6 | 
																						 
											   STORK N E. How many species of insects and other terrestrial arthropods are there on earth?[J]. Annu rev entomol, 2018, 63: 31-45. 
											 											 | 
										
																													
																						| 7 | 
																						 
											   LAROCHELLE H,  ERHAN D,  BENGIO Y. Zero-data learning of new tasks[C]// AAAI'08: Proceedings of the 23rd national conference on Artificial intelligence. New York, USA: ACM, 2008, 2: 646-651. 
											 											 | 
										
																													
																						| 8 | 
																						 
											   POURPANAH F,  ABDAR M,  LUO Y, et al. A review of generalized zero-shot learning methods[J]. IEEE trans pattern anal Mach intell, 2023, 45(4): 4051-4070. 
											 											 | 
										
																													
																						| 9 | 
																						 
											   MISHRA A,  REDDY S K,  MITTAL A, et al. A generative model for zero shot learning using conditional variational autoencoders[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway, New Jersey, USA: IEEE, 2018: 2188-2196. 
											 											 | 
										
																													
																						| 10 | 
																						 
											   SOHN K,  YAN X C,  LEE H. Learning structured output representation using deep conditional generative models[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 2. New York, USA: ACM, 2015: 3483-3491. 
											 											 | 
										
																													
																						| 11 | 
																						 
											   BOSER B E,  GUYON I M,  VAPNIK V N. A training algorithm for optimal margin classifiers[C]// Proceedings of The Fifth Annual Workshop on Computational Learning Theory. New York, USA: ACM, 1992: 144–152. 
											 											 | 
										
																													
																						| 12 | 
																						 
											   XIAN Y Q,  LORENZ T,  SCHIELE B, et al. Feature generating networks for zero-shot learning[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 5542-5551. 
											 											 | 
										
																													
																						| 13 | 
																						 
											   ARJOVSKY M,  CHINTALA S,  BOTTOU L. Wasserstein generative adversarial networks[C]// Proceedings of the 34th International Conference on Machine Learning - Volume 70. New York, USA: ACM, 2017: 214-223. 
											 											 | 
										
																													
																						| 14 | 
																						 
											   HAN Z Y,  FU Z Y,  YANG J. Learning the redundancy-free features for generalized zero-shot object recognition[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 12865-12874. 
											 											 | 
										
																													
																						| 15 | 
																						 
											   HAN Z Y,  FU Z Y,  CHEN S, et al. Contrastive embedding for generalized zero-shot learning[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2021: 2371-2381. 
											 											 | 
										
																													
																						| 16 | 
																						 
											   ZHONG F M,  CHEN Z K,  ZHANG Y C, et al. Zero- and few-shot learning for diseases recognition of Citrus aurantium L. using conditional adversarial autoencoders[J]. Computers and electronics in agriculture, 2020, 179: ID 105828. 
											 											 | 
										
																													
																						| 17 | 
																						 
											  WAH C,  BRANSON S,  WELINDER P, et al. The caltech-ucsd birds-200-2011 dataset[EB/OL]. [2023-12-10].  
											 											 | 
										
																													
																						| 18 | 
																						 
											   GOODFELLOW I J,  POUGET-ABADIE J,  MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2. New York, USA: ACM, 2014: 2672-2680. 
											 											 | 
										
																													
																						| 19 | 
																						 
											   Radford A,  Kim J W,  Hallacy C, et al. Learning transferable visual models from natural language supervision[C]// International Conference on Machine Learning. New York, USA: PMLR, 2021: 8748-8763. 
											 											 | 
										
																													
																						| 20 | 
																						 
											   HE K M,  ZHANG X Y,  REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2016: 770-778. 
											 											 | 
										
																													
																						| 21 | 
																						 
											   DENG J,  DONG W,  SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2009: 248-255. 
											 											 | 
										
																													
																						| 22 | 
																						 
											   KINGMA D P,  BA J. Adam: A method for stochastic optimization[EB/OL]. arXiv:1412.6980, 2014. 
											 											 | 
										
																													
																						| 23 | 
																						 
											   LAMPERT C H,  NICKISCH H,  HARMELING S. Learning to detect unseen object classes by between-class attribute transfer[C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2009: 951-958. 
											 											 | 
										
																													
																						| 24 | 
																						 
											   XIAN Y,  LAMPERT C H,  SCHIELE B, et al. Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly[J]. IEEE trans pattern anal Mach intell, 2019, 41(9): 2251-2265. 
											 											 | 
										
																													
																						| 25 | 
																						 
											   PATTERSON G,  XU C,  SU H, et al. The SUN attribute database: Beyond categories for deeper scene understanding[J]. International journal of computer vision, 2014, 108(1): 59-81. 
											 											 | 
										
																													
																						| 26 | 
																						 
											   NILSBACK M E,  ZISSERMAN A. Automated flower classification over a large number of classes[C]// 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing. Piscataway, New Jersey, USA: IEEE, 2008: 722-729. 
											 											 | 
										
																													
																						| 27 | 
																						 
											   VERMA V K,  ARORA G,  MISHRA A, et al. Generalized zero-shot learning via synthesized examples[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 4281-4289. 
											 											 | 
										
																													
																						| 28 | 
																						 
											   FELIX R,  VIJAY KUMAR B G,  REID I, et al. Multi-modal cycle-consistent generalized zero-shot learning[M]// Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 21-37. 
											 											 | 
										
																													
																						| 29 | 
																						 
											   XIAN Y Q,  SHARMA S,  SCHIELE B, et al. F-VAEGAN-D2: A feature generating framework for any-shot learning[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2019: 10275-10284. 
											 											 | 
										
																													
																						| 30 | 
																						 
											   LI J J,  JING M M,  LU K, et al. Leveraging the invariant side of generative zero-shot learning[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2019: 7402-7411. 
											 											 | 
										
																													
																						| 31 | 
																						 
											   KESHARI R,  SINGH R,  VATSA M. Generalized zero-shot learning via over-complete distribution[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 13300-13308. 
											 											 | 
										
																													
																						| 32 | 
																						 
											   NARAYAN S,  GUPTA A,  KHAN F S, et al. Latent embedding feedback and discriminative features for zero-shot classification[M]// Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 479-495. 
											 											 | 
										
																													
																						| 33 | 
																						 
											   HUYNH D,  ELHAMIFAR E. Fine-grained generalized zero-shot learning via dense attribute-based attention[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 4483-4493. 
											 											 | 
										
																													
																						| 34 | 
																						 
											   SCHONFELD E,  EBRAHIMI S,  SINHA S, et al. Generalized zero- and few-shot learning via aligned variational autoencoders[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2019: 8247-8255. 
											 											 | 
										
																													
																						| 35 | 
																						 
											   CHEN S M,  WANG W J,  XIA B H, et al. FREE: feature refinement for generalized zero-shot learning[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2021: 122-131. 
											 											 | 
										
																													
																						| 36 | 
																						 
											   MIKOLOV T,  CHEN K,  CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. arXiv:1301.3781, 2013. 
											 											 |