| 1 | 江杰, 周丽娜, 李刚. 基于机器视觉的羊体体尺测量[J]. 计算机应用, 2014, 34(3): 846-850, 887. | 
																													
																						|  |  JIANG J,  ZHOU L N,  LI G. Sheep body size measurement based on computer vision[J]. Journal of computer applications, 2014, 34(3): 846-850, 887. | 
																													
																						| 2 |  ZHANG A L,  WU B P,  TANA WUYUN C, et al. Algorithm of sheep body dimension measurement and its applications based on image analysis[J]. Computers and electronics in agriculture, 2018, 153: 33-45. | 
																													
																						| 3 |  YANG G Y,  XU X S,  SONG L, et al. Automated measurement of dairy cows body size via 3D point cloud data analysis[J]. Computers and electronics in agriculture, 2022, 200: ID 107218. | 
																													
																						| 4 |  LINDEBERG T. Scale invariant feature transform[J]. Scholarpedia, 2012, 7(5): ID 10491. | 
																													
																						| 5 |  SALAU J,  HAAS J H,  JUNGE W, et al. Feasibility of automated body trait determination using the SR4K time-of-flight camera in cow barns[J]. Springerplus, 2014, 3: ID 225. | 
																													
																						| 6 | 叶文帅, 康熙, 贺志将, 等. 基于深度图像的多姿态肉牛体尺自动测量方法[J]. 智慧农业(中英文), 2022(4): 144-155. | 
																													
																						|  |  YE W S,  KANG X,  HE Z J, et al. Automatic measurement of multi-posture beef cattle body size based on depth image[J]. Smart agriculture, 2022(4): 144-155. | 
																													
																						| 7 |  RUCHAY A,  KOBER V,  DOROFEEV K, et al. Accurate body measurement of live cattle using three depth cameras and non-rigid 3-D shape recovery[J]. Computers and electronics in agriculture, 2020, 179: ID 105821. | 
																													
																						| 8 |  SHI W,  DAI B,  SHEN W, et al. Automatic estimation of dairy cow body condition score based on attention-guided 3D point cloud feature extraction[J]. Computers and electronics in agriculture, 2023, 206: ID 107666. | 
																													
																						| 9 |  HU H,  YU J,  YIN L, et al. An improved PointNet++ point cloud segmentation model applied to automatic measurement method of pig body size[J]. Computers and electronics in agriculture, 2023, 205: ID 107560. | 
																													
																						| 10 |  YIN L,  ZHU J,  LIU C, et al. Point cloud-based pig body size measurement featured by standard and non-standard postures[J]. Computers and electronics in agriculture, 2022, 199: ID 107135. | 
																													
																						| 11 |  CHARLES R Q,  HAO S,  MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2017. | 
																													
																						| 12 |  ZHAO H,  JIANG L,  JIA J, et al. Point Transformer[EB/OL]. arXiv: 2012.09164, 2021. | 
																													
																						| 13 |  PARK C,  JEONG Y,  CHO M, et al. Fast Point Transformer[EB/OL]. arXiv: 2112.04702, 2022. | 
																													
																						| 14 |  YU X M,  TANG L L,  RAO Y M, et al. Point-BERT: Pre-training 3D point cloud transformers with masked point modeling[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2022. | 
																													
																						| 15 | 尹令, 蔡更元, 田绪红, 等. 多视角深度相机的猪体三维点云重构及体尺测量[J]. 农业工程学报, 2019, 35(23): 201-208. | 
																													
																						|  |  YIN L,  CAI G Y,  TIAN X H, et al. Three dimensional point cloud reconstruction and body size measurement of pigs based on multi-view depth camera[J]. Transactions of the Chinese society of agricultural engineering, 2019, 35(23): 201-208. | 
																													
																						| 16 |  LIN R H,  HU H,  WEN Z K, et al. Research on denoising and segmentation algorithm application of pigs' point cloud based on DBSCAN and PointNet[C]// 2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor). Piscataway, New Jersey, USA: IEEE, 2021: 42-47. | 
																													
																						| 17 |  QI C R,  YI L,  SU H, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space[EB/OL]. arXiv: 1706.02413, 2017. | 
																													
																						| 18 |  HOLTZMAN N G,  YAKUBOV D J. Fetal Pig Dissection Manual (BIOL 105)[M]. New York: New York Cuny Queens College, 2019. | 
																													
																						| 19 |  FISCHLER M A,  BOLLES R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[M]// Readings in Computer Vision. Amsterdam: Elsevier, 1987: 726-740. | 
																													
																						| 20 |  WU X,  LAO Y,  JIANG L, et al. Point transformer V2: Grouped vector attention and partition-based pooling[EB/OL]. arXiv: 2210.05666, 2022. | 
																													
																						| 21 |  GUO M H,  CAI J X,  LIU Z N, et al. PCT: Point cloud transformer[J]. Computational visual media, 2021, 7(2): 187-199. | 
																													
																						| 22 |  WANG P S. OctFormer: Octree-based transformers for 3D point clouds[J]. ACM transactions on graphics, 2023, 42(4): 1-11. | 
																													
																						| 23 |  YU X M,  RAO Y M,  WANG Z Y, et al. PoinTr: diverse point cloud completion with geometry-aware transformers[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2021. |