[1] |
SUN M F, JIANG C L, KONG Y S, et al. Recent advances in analytical methods for determination of polyphenols in tea: A comprehensive review[J]. Foods, 2022, 11(10): ID 1425.
|
[2] |
CHEN G C, YI Z, CHEN X Y, et al. Polyphenol nanoparticles from commonly consumed tea for scavenging free radicals, stabilizing pickering emulsions, and inhibiting cancer cells[J]. ACS applied nano materials, 2020, 4(1), 652-665.
|
[3] |
JANG M, PARK R, PARK Y I, et al. EGCG, a green tea polyphenol, inhibits human coronavirus replication in vitro [J]. Biochemical and biophysical research communications, 2021, 547: 23-28.
|
[4] |
XING L J, ZHANG H, QI R L, et al. Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols[J]. Journal of agricultural and food chemistry, 2019, 67(4): 1029-1043.
|
[5] |
MATSUSHITA K, HONDA C, NAKAMURA Y, et al. Comparison of colorimetric methods for the analysis of total polyphenols in green tea extracts[J]. Bioscience, biotechnology, and biochemistry, 2024, 88(7): 798-803.
|
[6] |
GHARIBZAHEDI S M T, BARBA F J, ZHOU J J, et al. Electronic sensor technologies in monitoring quality of tea: A review[J]. Biosensors, 2022, 12(5): ID 356.
|
[7] |
HUANG Y F, DONG W T, SANAEIFAR A, et al. Development of simple identification models for four main catechins and caffeine in fresh green tea leaf based on visible and near-infrared spectroscopy[J]. Computers and electronics in agriculture, 2020, 173: ID 105388.
|
[8] |
REN G X, LIU Y, NING J M, et al. Assessing black tea quality based on visible–near infrared spectra and kernel-based methods[J]. Journal of food composition and analysis, 2021, 98: ID 103810.
|
[9] |
BIANCOLILLO A, MARINI F. Special issue "application of spectroscopy in food analysis"[J]. Applied sciences, 2021, 11(9): ID 3860.
|
[10] |
CHEN S M, WANG C Y, TSAI C Y, et al. Fermentation quality evaluation of tea by estimating total catechins and theanine using near-infrared spectroscopy[J]. Vibrational spectroscopy, 2021, 115: ID 103278.
|
[11] |
SANAEIFAR A, HUANG X Y, CHEN M Y, et al. Nondestructive monitoring of polyphenols and caffeine during green tea processing using Vis-NIR spectroscopy[J]. Food science & nutrition, 2020, 8(11): 5860-5874.
|
[12] |
李晓丽, 张东毅, 董雨伦, 等. 基于卷积神经网络的茶鲜叶主要内含物的光谱快速检测方法[J]. 中国农业大学学报, 2021, 26(11): 113-122.
|
|
LI X L, ZHANG D Y, DONG Y L, et al. Spectral rapid detection of phytochemicals in tea(Camellia sinensis)based on convolutional neural network[J]. Journal of China agricultural university, 2021, 26(11): 113-122.
|
[13] |
WANG X Y, CHEN H C, JI R D, et al. Detection of carmine in black tea based on UV-vis absorption spectroscopy and machine learning[J]. Food analytical methods, 2025, 18(2): 149-160.
|
[14] |
HERSHBERGER J, MBANJO E G N, PETETI P, et al. Low-cost, handheld near-infrared spectroscopy for root dry matter content prediction in cassava[J]. The plant phenome journal, 2022, 5(1): ID e20040.
|
[15] |
王凡, 赵春江, 徐波, 等. 便携式茶鲜叶品质光谱检测装置研制[J]. 农业工程学报, 2020, 36(24): 273-280.
|
|
WANG F, ZHAO C J, XU B, et al. Development of a portable detection device for the quality of fresh tea leaves using spectral technology[J]. Transactions of the Chinese society of agricultural engineering, 2020, 36(24): 273-280.
|
[16] |
李文萃, 周新奇, 范起业, 等. 便携式近红外茶叶品质快速检测仪设计与试验[J]. 现代食品科技, 2021, 37(5): 303-309.
|
|
LI W C, ZHOU X Q, FAN Q Y, et al. Design and experiment of portable near-infrared tea quality detector[J]. Modern food science and technology, 2021, 37(5): 303-309.
|
[17] |
WANG W X, PENG Y K, SUN H W, et al. Real-time inspection of pork quality attributes using dual-band spectroscopy[J]. Journal of food engineering, 2018, 237: 103-109.
|
[18] |
RYCKEWAERT M, CHAIX G, HÉRAN D, et al. Evaluation of a combination of NIR micro-spectrometers to predict chemical properties of sugarcane forage using a multi-block approach[J]. Biosystems engineering, 2022, 217: 18-25.
|
[19] |
董春旺, 刘中原, 杨明, 等. 基于多源信息融合的绿茶杀青叶水分含量智能感知方法[J]. 食品科学, 2022, 43(20): 242-251.
|
|
DONG C W, LIU Z Y, YANG M, et al. Intelligent sensing method for detecting moisture content in fixed tea leaves for green tea based on multi-source information fusion[J]. Food science, 2022, 43(20): 242-251.
|
[20] |
XU J C, QU F F, SHEN B H, et al. Rapid detection of tea polyphenols in fresh tea leaves based on fusion of visible/short-wave and long-wave near infrared spectroscopy and its device development[J]. Applied sciences, 2023, 13(3): ID 1739.
|
[21] |
BANAS K, BANAS A M, PASTORIN G, et al. Sensing the changes in stratum corneum using Fourier transform infrared microspectroscopy and hyperspectral data processing[J]. Sensors, 2024, 24(21): ID 7054.
|
[22] |
ZHANG G S, HAO H, WANG Y C, et al. Optimized adaptive Savitzky-Golay filtering algorithm based on deep learning network for absorption spectroscopy[J]. Spectrochimica acta part A: Molecular and biomolecular spectroscopy, 2021, 263: ID 120187.
|
[23] |
WANG S H, ZHANG M Y, ZHAO Z X, et al. Optical properties and Monte Carlo simulation of cotton fibers with different micronaire values[J]. Industrial crops and products, 2025, 223: ID 120254.
|
[24] |
饶利波, 陈晓燕, 庞涛. 基于光谱技术的Bipls算法结合CARS算法的苹果可溶性固形物含量检测[J]. 发光学报, 2019, 40(3): ID 389.
|
|
RAO L B, CHEN X Y, PANG T. Determination of apple soluble solids content using bipls coupled with CARS algorithm based on spectral technology[J]. Chinese journal of luminescence, 2019, 40(3): ID 389.
|
[25] |
翁海勇, 许金钗, 陶铸, 等. 高EGCG含量茶树品种光谱识别模型构建[J]. 中国农机化学报, 2021, 42(6): 111-117.
|
|
WENG H Y, XU J C, TAO Z, et al. Construction of spectral screening model for tea cultivars with high EGCG content[J]. Journal of Chinese agricultural mechanization, 2021, 42(6): 111-117.
|
[26] |
安琪, 王占彬, 安国庆, 等. 基于随机森林-遗传算法-极限学习机的非侵入式负荷识别方法[J]. 科学技术与工程, 2022, 22(5): 1929-1935.
|
|
AN Q, WANG Z B, AN G Q, et al. Non-intrusive load identification method based on RF-GA-ELM[J]. Science technology and engineering, 2022, 22(5): 1929-1935.
|
[27] |
YANG B Y, YANG Z L, XU Y, et al. A 1D-CNN model for the early detection of Citrus Huanglongbing disease in the sieve plate of phloem tissue using micro-FTIR[J]. Chemometrics and intelligent laboratory systems, 2024, 252: ID 105202.
|
[28] |
ZHOU R Q, LI X L, HE Y, et al. Determination of catechins and caffeine content in tea (Camellia sinensis L.) leaves at different positions by Fourier-transform infrared spectroscopy[J]. Transactions of the asabe, 2018, 61(4): 1221-1230.
|
[29] |
李晓丽, 魏玉震, 徐劼, 等. 基于高光谱成像的茶叶中EGCG分布可视化[J]. 农业工程学报, 2018, 34(7): 180-186.
|
|
LI X L, WEI Y Z, XU J, et al. EGCG distribution visualization in tea leaves based on hyperspectral imaging technology[J]. Transactions of the Chinese society of agricultural engineering, 2018, 34(7): 180-186.
|
[30] |
姚奉奇, 陶骏骏, 王海晖, 等. 茶多酚热解特性及其反应机理研究[J]. 林产化学与工业, 2017, 37(5): 19-27.
|
|
YAO F Q, TAO J J, WANG H H, et al. Study of pyrolysis behavior and reaction mechanism of tea polyphenols[J]. Chemistry and industry of forest products, 2017, 37(5): 19-27.
|