1 |
王小萌, 吴文福, 尹君, 等. 基于温湿度场云图的小麦粮堆霉变与温湿度耦合分析[J]. 农业工程学报, 2018, 34(10): 260-266.
|
|
WANG X M, WU W F, YIN J, et al. Analysis of wheat bulk mould and temperature-humidity coupling based on temperature and humidity field cloud map[J]. Transactions of the Chinese society of agricultural engineering, 2018, 34(10): 260-266.
|
2 |
悦燕飞, 王若兰, 渠琛玲. 小麦储藏过程中发热霉变研究进展[J]. 粮食与油脂, 2018, 31(7): 18-20.
|
|
YUE Y F, WANG R L, QU C L. Research progress on fever and mildew of wheat during storage[J]. Cereals & oils, 2018, 31(7): 18-20.
|
3 |
ZHANG Y Y, PEI F, FANG Y, et al. Interactions among fungal community, fusarium mycotoxins, and components of harvested wheat under simulated storage conditions[J]. Journal of agricultural and food chemistry, 2019, 67(30): 8411-8418.
|
4 |
张红涛, 张亮, 谭联, 等. 基于近红外高光谱成像的单籽粒小麦品种分类研究[J]. 粮食与油脂, 2022, 35(12): 59-62.
|
|
ZHANG H T, ZHANG L, TAN L, et al. Classification of single wheat grain varieties based on near-infrared hyperspectral imaging[J]. Cereals & oils, 2022, 35(12): 59-62.
|
5 |
MAGWAZA L S, LANDAHL S, CRONJE P J R, et al. The use of Vis/NIRS and chemometric analysis to predict fruit defects and postharvest behaviour of 'Nules Clementine' mandarin fruit[J]. Food chemistry, 2014, 163: 267-274.
|
6 |
孙晓荣, 郑冬钰, 刘翠玲, 等. 小麦粉品质在线无损快速检测系统设计与实现[J]. 食品与机械, 2022, 38(12): 87-91.
|
|
SUN X R, ZHENG D Y, LIU C L, et al. Design and implementation of on-line nondestructive rapid testing system for wheat flour quality[J]. Food & machinery, 2022, 38(12): 87-91.
|
7 |
田静, 陈斌, 陆道礼, 等. 不同分光原理近红外光谱仪光谱标准化方法在小麦粉品质检测中的应用[J]. 中国食品学报, 2022, 22(10): 286-294.
|
|
TIAN J, CHEN B, LU D L, et al. Application of spectral standardization of different spectral types of near-infrared analyzers in the quality detection of wheat flour[J]. Journal of Chinese institute of food science and technology, 2022, 22(10): 286-294.
|
8 |
鲁玉杰, 王文敬, 张俊东, 等. 基于近红外光谱技术及ELM对小麦中不同生长阶段米象的分类识别[J]. 河南工业大学学报(自然科学版), 2023, 44(1): 104-111.
|
|
LU Y J, WANG W J, ZHANG J D, et al. Classification and recognition of Sitophilus oryzae in different growth stages of wheat based on near-infrared spectroscopy and ELM[J]. Journal of Henan university of technology (natural science edition), 2023, 44(1): 104-111.
|
9 |
王晓琼, 陈丽, 向娜娜, 等. 基于近红外光谱分析技术测定小麦淀粉的含量[J]. 粮食与饲料工业, 2021(6): 58-60.
|
|
WANG X Q, CHEN L, XIANG N N, et al. Determination of wheat starch content based on near infrared spectroscopy analysis technology[J]. Cereal & feed industry, 2021(6): 58-60.
|
10 |
陈岩, 何鸿举, 欧阳娟, 等. 近红外结合线性回归算法快速预测小麦籽粒干物质和重量[J]. 食品工业科技, 2022, 43(4): 323-331.
|
|
CHEN Y, HE H J, OUYANG J, et al. NIR combined with linear regression algorithm for rapid prediction of dry matter and weight in wheat grain[J]. Science and technology of food industry, 2022, 43(4): 323-331.
|
11 |
姜明伟, 王彩红, 张庆辉. 基于CARS变量选择方法的小麦硬度测定研究[J]. 河南工业大学学报(自然科学版), 2020, 41(6): 91-95, 105.
|
|
JIANG M W, WANG C H, ZHANG Q H. Study of wheat hardness determination based on CARS variable selection method[J]. Journal of Henan university of technology (natural science edition), 2020, 41(6): 91-95, 105.
|
12 |
邹小波, 封韬, 郑开逸, 等. 利用近红外及中红外融合技术对小麦产地和烘干程度的同时鉴别[J]. 光谱学与光谱分析, 2019, 39(5): 1445-1450.
|
|
ZOU X B, FENG T, ZHENG K Y, et al. Simultaneous identification of wheat origin and drying degree using near-infrared and mid-infrared fusion techniques[J]. Spectroscopy and spectral analysis, 2019, 39(5): 1445-1450.
|
13 |
沈飞, 刘潇, 裴斐, 等. ATR-FTIR在小麦及其制品呕吐毒素污染水平快速测定中的应用[J]. 食品科学, 2019, 40(2): 293-297.
|
|
SHEN F, LIU X, PEI F, et al. Rapid identification of deoxynivalenol contamination in wheat and its products by attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR)[J]. Food science, 2019, 40(2): 293-297.
|
14 |
宋金鹏, 梁琨, 张驰, 等. 基于深度学习与可见-近红外光谱的患腥黑穗病小麦籽粒分类研究[J]. 分析测试学报, 2023, 42(7): 784-793.
|
|
SONG J P, LIANG K, ZHANG C, et al. Research on classification of common bunt of wheat kernels based on visible-near infrared spectroscopy combined with deep learning algorithms[J]. Journal of instrumental analysis, 2023, 42(7): 784-793.
|
15 |
袁莹, 王伟, 褚璇, 等. 基于傅里叶变换近红外和支持向量机的霉变玉米检测[J]. 中国粮油学报, 2015, 30(5): 143-146.
|
|
YUAN Y, WANG W, CHU X, et al. Detection of moldy corns with FT- NIR spectroscopy based on SVM[J]. Journal of the Chinese cereals and oils association, 2015, 30(5): 143-146.
|
16 |
MANCINI M, MAZZONI L, QADERI R, et al. Prediction of soluble solids content by means of NIR spectroscopy and relation with botrytis cinerea tolerance in strawberry cultivars[J]. Horticulturae, 2023, 9(1): ID 91.
|
17 |
JIANG H, DENG J H, ZHU C Y. Quantitative analysis of aflatoxin B1 in moldy peanuts based on near-infrared spectra with two-dimensional convolutional neural network[J]. Infrared physics & technology, 2023, 131: ID 104672.
|
18 |
SHEN F, WU Q F, LIU P, et al. Detection of Aspergillus spp. contamination levels in peanuts by near infrared spectroscopy and electronic nose[J]. Food control, 2018, 93: 1-8.
|
19 |
刘建学, 尹晓慧, 韩四海, 等. 便捷式近红外光谱仪研究进展[J]. 河南农业大学学报, 2019, 53(4): 662-670.
|
|
LIU J X, YIN X H, HAN S Het al. Review of portable near-infrared spectrometers[J]. Journal of Henan agricultural university. 2019, 53(4): 662-670.
|
20 |
霍学松, 陈瀑, 戴嘉伟, 等. 微小型近红外光谱仪的应用进展与展望[J]. 分析测试学报, 2022, 41(9): 1301-1313.
|
|
HUO X S, CHEN P, DAI J W, et al. Progress and prospect of application of miniatured near infrared spectrometers[J]. Journal of instrumental analysis, 2022, 41(9): 1301-1313.
|