| 1 | 周国民. 我国农业大数据应用进展综述[J]. 农业大数据学报, 2019, 1(1): 16-23. | 
																													
																						|  |  ZHOU G M. Progress in the application of big data in agriculture in China[J]. Journal of agricultural big data, 2019, 1(1): 16-23. | 
																													
																						| 2 | 叶思菁, 宋长青, 程昌秀, 等. 中国耕地资源利用的“五化”态势与治理对策[J]. 中国科学院院刊, 2023, 38(12): 1962-1976. | 
																													
																						|  |  YE S J,  SONG C Q,  CHENG C X, et al. Five issues and countermeasures of China cropland resource use[J]. Bulletin of Chinese academy of sciences, 2023, 38(12): 1962-1976 | 
																													
																						| 3 |  HOGAN A,  BLOMQVIST E,  COCHEZ M, et al. Knowledge graphs[J]. ACM computing surveys, 2022, 54(4): 1-37. | 
																													
																						| 4 |  PRATAP DEB NATH R,  RANI DAS T,  CHANDRO DAS T, et al. Knowledge graph generation and enabling multidimensional analytics on Bangladesh agricultural data[J]. IEEE access, 2024, 12: 87512-87531. | 
																													
																						| 5 | 赵瑞雪, 杨晨雪, 郑建华, 等. 农业智能知识服务研究现状及展望[J]. 智慧农业(中英文), 2022, 4(4): 105-125. | 
																													
																						|  |  ZHAO R X,  YANG C X,  ZHENG J H, et al. Agricultural intelligent knowledge service: Overview and future perspectives[J]. Smart agriculture, 2022, 4(4): 105-125. | 
																													
																						| 6 | 姜侯, 杨雅萍, 孙九林. 农业大数据研究与应用[J]. 农业大数据学报, 2019, 1(1): 5-15. | 
																													
																						|  |  JIANG H,  YANG Y P,  SUN J L. Research and application of big data in agriculture[J]. Journal of agricultural big data, 2019, 1(1): 5-15. | 
																													
																						| 7 | 张玉成, 张晓博, 高树琴, 等. “伏羲农场”: 智慧农业技术集成创新的实践探索与思考[J]. 中国科学院院刊, 2025, 40(2): 301-309. | 
																													
																						|  |  ZHANG Y C,  ZHANG X B,  GAO S Q, et al. The fuxi farm: Practice and reflection on integrated innovation of smart agriculture technology[J]. Bulletin of Chinese academy of sciences, 2025, 40(2): 301-309. | 
																													
																						| 8 | 周济,  TARDIEU F,  PRIDMORE T, 等. 植物表型组学: 发展、现状与挑战[J]. 南京农业大学学报, 2018, 41(4): 580-588. | 
																													
																						|  |  ZHOU J,  TARDIEU F,  PRIDMORE T, et al. Plant phenomics: History, present status and challenges[J]. Journal of Nanjing agricultural university, 2018, 41(4): 580-588. | 
																													
																						| 9 | 陈学庚, 温浩军, 张伟荣, 等. 农业机械与信息技术融合发展现状与方向[J]. 智慧农业(中英文), 2020, 2(4): 1-16. | 
																													
																						|  |  CHEN X G,  WEN H J,  ZHANG W R, et al. Advances and progress of agricultural machinery and sensing technology fusion[J]. Smart agriculture, 2020, 2(4): 1-16. | 
																													
																						| 10 | 李振洪, 朱武, 余琛, 等. 影像大地测量学发展现状与趋势[J]. 测绘学报, 2023, 52(11): 1805-1834. | 
																													
																						|  |  LI Z H,  ZHU W,  YU C, et al. Development status and trends of imaging geodesy[J]. Acta geodaetica et cartographica sinica, 2023, 52(11): 1805-1834. | 
																													
																						| 11 | 唐闻涛, 胡泽林. 农业知识图谱研究综述[J]. 计算机工程与应用, 2024, 60(2): 63-76. | 
																													
																						|  |  TANG W T,  HU Z L. A review of agricultural knowledge graph research[J]. Journal of computer engineering and applications, 2024, 60(2): 63-76. | 
																													
																						| 12 |  VEENA G,  GUPTA D,  KANJIRANGAT V. Semi-supervised bootstrapped syntax-semantics-based approach for agriculture relation extraction for knowledge graph creation and reasoning[J]. IEEE access, 2023, 11: 138375-138398. | 
																													
																						| 13 |  ZHANG D D,  ZHAO R X,  XIAN G J, et al. A new model construction based on the knowledge graph for mining elite polyphenotype genes in crops[J]. Frontiers in plant science, 2024, 15: ID 1361716. | 
																													
																						| 14 |  LIN Y T,  LI D C,  PENG P, et al. A reasoning method for rice fertilization strategy based on spatiotemporal knowledge graph[J]. Transactions in GIS, 2024, 28(4): 902-924. | 
																													
																						| 15 |  TOGNINALLI M,  WANG X,  KUCERA T, et al. Multi-modal deep learning improves grain yield prediction in wheat breeding by fusing genomics and phenomics[J]. Bioinformatics, 2023, 39(6): ID btad336. | 
																													
																						| 16 |  JING R Z,  LI P. Knowledge graph for integration and quality traceability of agricultural product information[J]. Frontiers in sustainable food systems, 2024, 8: ID 1389945. | 
																													
																						| 17 |  FOUNTAS S,  ESPEJO-GARCIA B,  KASIMATI A, et al. The future of digital agriculture: Technologies and opportunities[J]. IT professional, 2020, 22(1): 24-28. | 
																													
																						| 18 |  HOU X,  ONG S K,  NEE A Y C, et al. GRAONTO: A graph-based approach for automatic construction of domain ontology[J]. Expert systems with applications, 2011, 38(9): 11958-11975. | 
																													
																						| 19 |  ZHOU Z P,  GOH Y M,  SHEN L J. Overview and analysis of ontology studies supporting development of the construction industry[J]. Journal of computing in civil engineering, 2016, 30(6): ID 04016026. | 
																													
																						| 20 |  NISMI MOL E A,  SANTOSH KUMAR M B. Review on knowledge extraction from text and scope in agriculture domain[J]. Artificial intelligence review, 2023, 56(5): 4403-4445. | 
																													
																						| 21 | 贺纯佩, 李思经. 农业叙词表在中国的发展和农业本体论展望[J]. 农业图书情报学刊, 2003, 15(4): 16-19. | 
																													
																						|  |  HE C P,  LI S J. Agricultural thesaurus development and prospect of agricultural ontology in China[J]. Journal of library and information sciences in agriculture, 2003, 15(4): 16-19. | 
																													
																						| 22 | 鲜国建. 农业科学叙词表向农业本体转化系统的研究与实现[D]. 北京: 中国农业科学院, 2008. | 
																													
																						|  |  XIAN G J. Research and implementation of the system for transforming agricultural thesaurus into agricultural ontology[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008. | 
																													
																						| 23 |  LI J,  SUN A X,  HAN J L, et al. A survey on deep learning for named entity recognition[J]. IEEE transactions on knowledge and data engineering, 2022, 34(1): 50-70. | 
																													
																						| 24 |  HOOD A S C,  SHACKELFORD G E,  CHRISTIE A P, et al. A systematic map of cassava farming practices and their agricultural and environmental impacts using new ontologies: Agri-ontologies 1.0[J]. Ecological solutions and evidence, 2023, 4(2): ID e12249. | 
																													
																						| 25 | 郑颖, 金松林, 张自阳, 等. 基于本体的小麦病虫害问答系统构建与实现[J]. 河南农业科学, 2016, 45(6): 143-146. | 
																													
																						|  |  ZHENG Y,  JIN S L,  ZHANG Z Y, et al. Construction of question answering system related to wheat diseases and insect pests based on ontology[J]. Journal of Henan agricultural sciences, 2016, 45(6): 143-146. | 
																													
																						| 26 | 李悦, 孙坦, 鲜国建, 等. 面向多源数据深度融合的农作物病虫害本体构建研究[J]. 数字图书馆论坛, 2021(2): 2-10. | 
																													
																						|  |  LI Y,  SUN T,  XIAN G J, et al. Research on ontology construction of crop diseases and pests for deep fusion of multi-source data[J]. Digital library forum, 2021(2): 2-10. | 
																													
																						| 27 | 王川, 刘尚旺, 杨彧昕, 等. 小麦草害本体知识库构建研究[J]. 河南师范大学学报(自然科学版), 2014, 42(6): 138-142. | 
																													
																						|  |  WANG C,  LIU S W,  YANG Y X, et al. Study on construction of ontology knowledge base for wheat-weed[J]. Journal of Henan normal university (natural science edition), 2014, 42(6): 138-142. | 
																													
																						| 28 | 曹丽英, 姚玉霞, 于合龙, 等. 基于模糊本体的玉米病害诊断模型的构建[J]. 华南农业大学学报, 2014, 35(2): 101-104. | 
																													
																						|  |  CAO L Y,  YAO Y X,  YU H L, et al. Construction of the model in maize disease diagnosis based on fuzzy ontology[J]. Journal of south China agricultural university, 2014, 35(2): 101-104. | 
																													
																						| 29 | 卜伟琼, 方逵, 张晓玲, 等. 基于本体的柑橘病虫害知识模型构建[J]. 江苏农业科学, 2013, 41(10): 363-366. | 
																													
																						|  |  BU W Q,  FANG K,  ZHANG X L, et al. Construction of knowledge model of citrus diseases and insect pests based on ontology[J]. Jiangsu agricultural sciences, 2013, 41(10): 363-366. | 
																													
																						| 30 | 姜大庆, 蔡银杰. 基于本体的蔬菜病虫害知识库构建[J]. 江苏农业科学, 2012, 40(7): 368-370. | 
																													
																						|  |  JIANG D Q,  CAI Y J. Ontology-based knowledge base construction of vegetable diseases and pests[J]. Jiangsu agricultural sciences, 2012, 40(7): 368-370. | 
																													
																						| 31 |  SANJU SARAVANAN K,  BHAGAVATHIAPPAN V. Innovative agricultural ontology construction using NLP methodologies and graph neural network[J]. Engineering science and technology, an international journal, 2024, 52: ID 101675. | 
																													
																						| 32 |  GHAZAL R,  MALIK A K,  QADEER N, et al. Intelligent role-based access control model and framework using semantic business roles in multi-domain environments[J]. IEEE access, 2020, 8: 12253-12267. | 
																													
																						| 33 |  AYDIN S,  AYDIN M N. Ontology-based data acquisition model development for agricultural open data platforms and implementation of OWL2MVC tool[J]. Computers and electronics in agriculture, 2020, 175: ID 105589. | 
																													
																						| 34 |  RAJENDRAN D,  VIGNESHWARI S. Design of agricultural ontology based on levy flight distributed optimization and naïve Bayes classifier[J]. Sādhanā, 2021, 46(3): ID 141. | 
																													
																						| 35 |  TA C D C,  TRAN T K. Constructing a subject-based ontology through the utilization of a semantic knowledge graph[J]. International journal of information technology, 2024, 16(2): 1063-1071. | 
																													
																						| 36 |  MAHMOOD K,  MOKHTAR R,  RAZA M A, et al. Ecological and confined domain ontology construction scheme using concept clustering for knowledge management[J]. Applied sciences, 2023, 13(1): ID 32. | 
																													
																						| 37 | 杨飘, 董文永. 基于BERT嵌入的中文命名实体识别方法[J]. 计算机工程, 2020, 46(4): 40-45, 52. | 
																													
																						|  |  YANG P,  DONG W Y. Chinese named entity recognition method based on BERT embedding[J]. Computer engineering, 2020, 46(4): 40-45, 52. | 
																													
																						| 38 |  GAO W C,  ZHENG X H,  ZHAO S S. Named entity recognition method of Chinese EMR based on BERT-BiLSTM-CRF[J]. Journal of physics: Conference series, 2021, 1848(1): ID 012083. | 
																													
																						| 39 |  CHANG Y,  KONG L,  JIA K J, et al. Chinese named entity recognition method based on BERT[C]// 2021 IEEE International Conference on Data Science and Computer Application (ICDSCA). Piscataway, New Jersey, USA: IEEE, 2021: 294-299. | 
																													
																						| 40 | 琚生根, 李天宁, 孙界平. 基于关联记忆网络的中文细粒度命名实体识别[J]. 软件学报, 2021, 32(8): 2545-2556. | 
																													
																						|  |  JU S G,  LI T N,  SUN J P. Chinese fine-grained Name entity recognition based on associated memory networks[J]. Journal of software, 2021, 32(8): 2545-2556. | 
																													
																						| 41 |  LI Z P,  CAO S,  ZHAI M Y, et al. Multi-level semantic enhancement based on self-distillation BERT for Chinese named entity recognition[J]. Neurocomputing, 2024, 586: ID 127637. | 
																													
																						| 42 | 李林, 周晗, 郭旭超, 等. 基于多源信息融合的中文农作物病虫害命名实体识别[J]. 农业机械学报, 2021, 52(12): 253-263. | 
																													
																						|  |  LI L,  ZHOU H,  GUO X C, et al. Named entity recognition of diseases and insect pests based on multi source information fusion[J]. Transactions of the Chinese society for agricultural machinery, 2021, 52(12): 253-263. | 
																													
																						| 43 | 赵鹏飞, 赵春江, 吴华瑞, 等. 基于注意力机制的农业文本命名实体识别[J]. 农业机械学报, 2021, 52(1): 185-192. | 
																													
																						|  |  ZHAO P F,  ZHAO C J,  WU H R, et al. Named entity recognition of Chinese agricultural text based on attention mechanism[J]. Transactions of the Chinese society for agricultural machinery, 2021, 52(1): 185-192. | 
																													
																						| 44 |  JIE Z M,  LU W. Dependency-guided LSTM-CRF for named entity recognition[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, PA, USA: ACL, 2019: 3860-3870. | 
																													
																						| 45 |  GUO X C,  ZHOU H,  SU J, et al. Chinese agricultural diseases and pests named entity recognition with multi-scale local context features and self-attention mechanism[J]. Computers and electronics in agriculture, 2020, 179: ID 105830. | 
																													
																						| 46 | 沈利言, 姜海燕, 胡滨, 等. 水稻病虫草害与药剂实体关系联合抽取算法[J]. 南京农业大学学报, 2020, 43(6):1151-1161. | 
																													
																						|  |  SHEN L Y,  JIANG H Y,  HU B, et al. A study on joint entity recognition and relation extraction for rice diseases pests weeds and drugs[J]. Journal of Nanjing agricultural university, 2020, 43(6):1151-1161. | 
																													
																						| 47 |  WANG C,  GAO J L,  RAO H D, et al. Named entity recognition (NER) for Chinese agricultural diseases and pests based on discourse topic and attention mechanism[J]. Evolutionary intelligence, 2024, 17(1): 457-466. | 
																													
																						| 48 |  PANOUTSOPOULOS H,  ESPEJO-GARCIA B,  RAAIJMAKERS S, et al. Investigating the effect of different fine-tuning configuration scenarios on agricultural term extraction using BERT[J]. Computers and electronics in agriculture, 2024, 225: ID 109268. | 
																													
																						| 49 |  NISMI MOL E A,  SANTOSH KUMAR M B. End-to-end framework for agricultural entity extraction: A hybrid model with transformer[J]. Computers and electronics in agriculture, 2024, 225: ID 109309. | 
																													
																						| 50 |  VEENA G,  KANJIRANGAT V,  GUPTA D. AGRONER: An unsupervised agriculture named entity recognition using weighted distributional semantic model[J]. Expert systems with applications, 2023, 229: ID 120440. | 
																													
																						| 51 |  ZHANG W H,  WANG C S,  WU H R, et al. Research on the Chinese named-entity–relation-extraction method for crop diseases based on BERT[J]. Agronomy, 2022, 12(9): ID 2130. | 
																													
																						| 52 | 计洁, 金洲, 王儒敬, 等. 基于递进式卷积网络的农业命名实体识别方法[J]. 智慧农业(中英文), 2023, 5(1): 122-131. | 
																													
																						|  |  JI J,  JIN Z,  WANG R J, et al. Progressive convolutional net based method for agricultural named entity recognition[J]. Smart agriculture, 2023, 5(1): 122-131. | 
																													
																						| 53 |  YU J F,  JIANG J,  YANG L, et al. Improving multimodal named entity recognition via entity span detection with unified multimodal transformer[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online. Stroudsburg, PA, USA: ACL, 2020: 3342-3352. | 
																													
																						| 54 |  LU D,  NEVES L,  CARVALHO V, et al. Visual attention model for Name tagging in multimodal social media[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA, USA: ACL, 2018: 1990-1999. | 
																													
																						| 55 |  GONG Y C,  LYU X Q,  YUAN Z, et al. GNN-based multimodal named entity recognition[J]. The computer journal, 2024, 67(8): 2622-2632. | 
																													
																						| 56 |  ZHAO F,  LI C H,  WU Z, et al. Learning from different text-image pairs: A relation-enhanced graph convolutional network for multimodal NER[C]// Proceedings of the 30th ACM International Conference on Multimedia. New York, USA: ACM, 2022: 3983-3992. | 
																													
																						| 57 |  SUN L,  WANG J Q,  ZHANG K, et al. RpBERT: A text-image relation propagation-based BERT model for multimodal NER[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(15): 13860-13868. | 
																													
																						| 58 |  WANG P,  CHEN X H,  SHANG Z Y, et al. Multimodal named entity recognition with bottleneck fusion and contrastive learning[J]. IEICE transactions on information and systems, 2023, 106(4): 545-555. | 
																													
																						| 59 |  CUI S Y,  CAO J X,  CONG X, et al. Enhancing multimodal entity and relation extraction with variational information bottleneck[J]. ACM transactions on audio, speech, and language processing, 2024, 32: 1274-1285. | 
																													
																						| 60 |  LU F,  YANG X,  LI Q, et al. Few-shot multimodal named entity recognition based on mutlimodal causal intervention graph[C]// Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC/COLING) Torino, Italy, 2024: 7208-7219. | 
																													
																						| 61 |  ZHENG C M,  WU Z W,  WANG T, et al. Object-aware multimodal named entity recognition in social media posts with adversarial learning[J]. IEEE transactions on multimedia, 2021, 23: 2520-2532. | 
																													
																						| 62 |  WU Z W,  ZHENG C M,  CAI Y, et al. Multimodal representation with embedded visual guiding objects for named entity recognition in social media posts[C]// Proceedings of the 28th ACM International Conference on Multimedia. New York, USA: ACM, 2020: 1038-1046. | 
																													
																						| 63 |  ZHANG D,  WEI S Z,  LI S S, et al. Multi-modal graph fusion for named entity recognition with targeted visual guidance[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(16): 14347-14355. | 
																													
																						| 64 |  WANG Y P,  JIANG C M. Fine-grained multimodal named entity recognition with heterogeneous image-text similarity graphs[J]. International journal of machine learning and cybernetics, 2025, 16(4): 2401-2415. | 
																													
																						| 65 |  CHEN X,  ZHANG N Y,  LI L, et al. Hybrid transformer with multi-level fusion for multimodal knowledge graph completion[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2022: 904-915. | 
																													
																						| 66 |  WANG D S,  FENG X Q,  LIU Z M, et al. 2M-NER: Contrastive learning for multilingual and multimodal NER with language and modal fusion[J]. Applied intelligence, 2024, 54(8): 6252-6268. | 
																													
																						| 67 |  HE L,  WANG Q X,  LIU J, et al. Visual clue guidance and consistency matching framework for multimodal named entity recognition[J]. Applied sciences, 2024, 14(6): ID 2333. | 
																													
																						| 68 |  SHEN W,  WANG J Y,  HAN J W. Entity linking with a knowledge base: Issues, techniques, and solutions[J]. IEEE transactions on knowledge and data engineering, 2015, 27(2): 443-460. | 
																													
																						| 69 |  AL-MOSLMI T,  GALLOFRE OCANA M,  OPDAHL A L, et al. Named entity extraction for knowledge graphs: A literature overview[J]. IEEE access, 2020, 8: 32862-32881. | 
																													
																						| 70 |  WU Q,  TENEY D,  WANG P, et al. Visual question answering: A survey of methods and datasets[J]. Computer vision and image understanding, 2017, 163: 21-40. | 
																													
																						| 71 |  MICHEL F,  GANDON F,  AH-KANE V, et al. Covid-on-the-web: Knowledge graph and services to advance COVID-19 research[C]// The Semantic Web-ISWC 2020. Cham, Germany: Springer International Publishing, 2020: 294-310. | 
																													
																						| 72 |  VAN HULST J M,  HASIBI F,  DERCKSEN K, et al. REL: An entity linker standing on the shoulders of giants[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2020: 2197-2200. | 
																													
																						| 73 |  PAPANTONIOU K,  EFTHYMIOU V,  PLEXOUSAKIS D. Automating linking named entities in diderot's encyclopédie to wikidatabenchmark generation for named entity recognition and entity linking[C]// The Semantic Web: ESWC 2023 Satellite Events. Cham, Germany: Springer Nature Switzerland, 2023: 143-148. | 
																													
																						| 74 |  LOUKACHEVITCH N,  ARTEMOVA E,  BATURA T, et al. NEREL: A Russian information extraction dataset with rich annotation for nested entities, relations, and wikidata entity links[J]. Language resources and evaluation, 2024, 58(2): 547-583. | 
																													
																						| 75 |  DE CAO N,  WU L,  POPAT K, et al. Multilingual autoregressive entity linking[J]. Transactions of the association for computational linguistics, 2022, 10: 274-290. | 
																													
																						| 76 |  ZHENG Q S,  WEN H,  WANG M, et al. Faster zero-shot multi-modal entity linking via visual-Linguistic Representation[J]. Data intelligence, 2022, 4(3): 493-508. | 
																													
																						| 77 |  ZHOU K,  LI Y P,  WANG Q, et al. GenDecider: Integrating "none of the candidates" judgments in zero-shot entity linking re-ranking[C]// Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers). Stroudsburg, PA, USA: ACL, 2024: 239-245. | 
																													
																						| 78 |  LUO P F,  XU T,  WU S W, et al. Multi-grained multimodal interaction network for entity linking[C]// Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA. ACM, 2023: 1583-1594. | 
																													
																						| 79 |  VEMPALA A,  PREOŢIUC-PIETRO D. Categorizing and inferring the relationship between the text and image of twitter posts[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: ACL, 2019: 2830-2840. | 
																													
																						| 80 |  PAUL B,  RUDRAPAL D,  CHAKMA K, et al. Multimodal machine translation approaches for Indian languages: A comprehensive survey[J]. Journal of universal computer science, 2024, 30(5): 694-717. | 
																													
																						| 81 |  JI S X,  PAN S R,  CAMBRIA E, et al. A survey on knowledge graphs: Representation, acquisition, and applications[J]. IEEE transactions on neural networks and learning systems, 2022, 33(2): 494-514. | 
																													
																						| 82 |  DOST S,  SERAFINI L,  ROSPOCHER M, et al. VTKEL: A resource for visual-textual-knowledge entity linking[C]// Proceedings of the 35th Annual ACM Symposium on Applied Computing. New York, USA: ACM, 2020: 2021-2028. | 
																													
																						| 83 |  ZHA E Z,  ZENG D L,  LIN M, et al. CEPTNER: Contrastive learning Enhanced Prototypical network for Two-stage few-shot Named Entity Recognition[J]. Knowledge-based systems, 2024, 295: ID 111730. | 
																													
																						| 84 |  GAN J R,  LUO J C,  WANG H W, et al. Multimodal entity linking: A new dataset and a baseline[C]// Proceedings of the 29th ACM International Conference on Multimedia. New York, USA: ACM, 2021: 993-1001. | 
																													
																						| 85 |  YANG C,  HE B,  WU Y, et al. MMEL: A joint learning framework for multi-mention entity linking[C]// the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023). New York, USA: PMLR, 2023: 2411-2421. | 
																													
																						| 86 |  TOUVRON H,  CORD M,  DOUZE M, et al. Training data-efficient image transformers & distillation through attention[EB/OL]. arXiv: 2012.12877, 2020. | 
																													
																						| 87 |  BORTH D,  JI R R,  CHEN T, et al. Large-scale visual sentiment ontology and detectors using adjective noun pairs[C]// Proceedings of the 21st ACM International Conference on Multimedia. New York, USA: ACM, 2013: 223-232. | 
																													
																						| 88 |  SONG S Z,  ZHAO S,  WANG C Y, et al. A dual-way enhanced framework from text matching point of view for multimodal entity linking[J]. Proceedings of the AAAI conference on artificial intelligence, 2024, 38(17): 19008-19016. | 
																													
																						| 89 |  LUO P F,  XU T,  LIU C, et al. Bridging gaps in content and knowledge for multimodal entity linking[C]// Proceedings of the 32nd ACM International Conference on Multimedia. New York, USA: ACM, 2024: 9311-9320. | 
																													
																						| 90 |  LIU Q,  HE Y Y,  XU T, et al. UniMEL: A unified framework for multimodal entity linking with large language models[C]// Proceedings of the 33rd ACM International Conference on Information and Knowledge Management. New York, USA: ACM, 2024: 1909-1919. | 
																													
																						| 91 |  ZHANG Z,  SHENG J,  ZHANG C, et al. Optimal transport guided correlation assignment for multimodal entity linking[C]// Findings of the Association for Computational Linguistics (ACL) 2024. Stroudsburg, PA, USA: ACL, 2024, 4103-4117. | 
																													
																						| 92 |  SUI X H,  ZHANG Y,  ZHAO Y, et al. MELOV: Multimodal entity linking with optimized visual features in latent space[C]// Findings of the Association for Computational Linguistics ACL 2024. Bangkok, Thailand and virtual meeting. Stroudsburg, PA, USA: ACL, 2024: 816-826. | 
																													
																						| 93 |  JIANG T S,  LIU T Y,  GE T, et al. Encoding temporal information for time-aware link prediction[C]// Proceedings of the 2016 Conference on Empirical Methods in NaturalLanguage Processing. Stroudsburg, PA, USA: ACL, 2016: 2350-2354. | 
																													
																						| 94 |  WANG Z,  ZHANG J W,  FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[J]. Proceedings of the AAAI conference on artificial intelligence, 2014, 28(1): 1112-1119. | 
																													
																						| 95 |  MOON C,  JONES P,  SAMATOVA N F. Learning entity type embeddings for knowledge graph completion[C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. New York, USA: ACM, 2017: 2215-2218. | 
																													
																						| 96 |  YANG W X,  YANG S,  WANG G P, et al. Knowledge graph construction and representation method for potato diseases and pests[J]. Agronomy, 2024, 14(1): ID 90. | 
																													
																						| 97 |  JIANG T,  LIU T,  GE T, et al. Towards time-aware knowledge graph completion[C]// The 26th International Conference on Computational Linguistics: Technical Papers. Osaka, Japan: The COLING 2016 Organizing Committee, 2016: 1715-1724. | 
																													
																						| 98 |  LEBLAY J,  CHEKOL M W. Deriving validity time in knowledge graph[C]// Companion of the The Web Conference 2018. New York, USA: ACM, 2018: 1771-1776. | 
																													
																						| 99 |  DASGUPTA S S,  RAY S N,  TALUKDAR P. HyTE: Hyperplane-based temporally aware knowledge graph embedding[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: ACL, 2018: 2001-2011. | 
																													
																						| 100 |  ZHANG F,  CHEN H Z,  SHI Y Z, et al. Joint framework for tensor decomposition-based temporal knowledge graph completion[J]. Information sciences, 2024, 654: ID 119853. | 
																													
																						| 101 |  SADEGHIAN A,  ARMANDPOUR M,  COLAS A, et al. ChronoR: Rotation based temporal knowledge graph embedding[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(7): 6471-6479. | 
																													
																						| 102 |  ZHU C C,  CHEN M H,  FAN C J, et al. Learning from history: Modeling temporal knowledge graphs with sequential copy-generation networks[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(5): 4732-4740. | 
																													
																						| 103 |  HAN Z,  DING Z F,  MA Y P, et al. Learning neural ordinary equations for forecasting future links on temporal knowledge graphs[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: ACL, 2021: 8352-8364. | 
																													
																						| 104 |  SUN H H,  ZHONG J L,  MA Y P, et al. TimeTraveler: Reinforcement learning for temporal knowledge graph forecasting[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: ACL, 2021: 8306-8319. | 
																													
																						| 105 |  LI Z X,  GUAN S P,  JIN X L, et al. Complex evolutional pattern learning for temporal knowledge graph reasoning[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Dublin, Ireland. Stroudsburg, PA, USA: ACL, 2022: 290-296. | 
																													
																						| 106 |  GOEL R,  KAZEMI S M,  BRUBAKER M, et al. Diachronic embedding for temporal knowledge graph completion[J]. Proceedings of the AAAI conference on artificial intelligence, 2020, 34(4): 3988-3995. | 
																													
																						| 107 |  ISLAKOGLU D S,  CHEKOL M W,  VELEGRAKIS Y. Leveraging pre-trained language models for time interval prediction inText-enhanced temporal knowledge graphs[C]// The Semantic Web. Cham, Germany: Springer Nature Switzerland, 2024: 59-78. | 
																													
																						| 108 |  JIA W,  MA R Z,  NIU W N, et al. SFTe: Temporal knowledge graphs embedding for future interaction prediction[J]. Information systems, 2024, 125: ID 102423. |