| 1 |  SARKAR S,  DEY A,  PRADHAN R, et al. Crop yield prediction using multimodal meta-transformer and temporal graph neural networks[J]. IEEE transactions on agrifood electronics, 2024, 2(2): 545-553. | 
																													
																						| 2 |  MAQSOOD Y,  USMAN S M,  ALHUSSEIN M, et al. Model agnostic meta-learning (MAML)-based ensemble model for accurate detection of wheat diseases using vision transformer and graph neural networks[J]. Computers, materials & continua, 2024, 79(2): 2795-2811. | 
																													
																						| 3 |  ZHAO R R,  HAN X F. Prediction method of fruit and vegetable product consumption behavior based on graph neural network[J]. Pakistan journal of agricultural sciences, 2024, 61(4): 1235-1245. | 
																													
																						| 4 |  GONG R Z,  LI X X. The application progress and research trends of knowledge graphs and large language models in agriculture[J]. Computers and electronics in agriculture, 2025, 235: ID 110396. | 
																													
																						| 5 |  SCARSELLI F,  GORI M,  TSOI A C, et al. The graph neural network model[J]. IEEE transactions on neural networks, 2009, 20(1): 61-80. | 
																													
																						| 6 |  WU Z H,  PAN S R,  CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE transactions on neural networks and learning systems, 2021, 32(1): 4-24. | 
																													
																						| 7 | 吴博, 梁循, 张树森, 等. 图神经网络前沿进展与应用[J]. 计算机学报, 2022, 45(1): 35-68. | 
																													
																						|  |  WU B,  LIANG X,  ZHANG S S, et al. Advances and applications in graph neural network[J]. Chinese journal of computers, 2022, 45(1): 35-68. | 
																													
																						| 8 |  NIKOLENTZOS G,  TIXIER A J P,  VAZIRGIANNIS M. Message passing attention networks for document understanding[EB/OL]. arXiv: 1908.06267, 2019. | 
																													
																						| 9 |  XU K,  HU W H,  LESKOVEC J, et al. How powerful are graph neural networks?[EB/OL]. arXiv: 1810.00826, 2018. | 
																													
																						| 10 |  HUANG B X,  CARLEY K M. Inductive graph representation learning with recurrent graph neural networks[EB/OL]. arXiv: abs/ 1904.2019. | 
																													
																						| 11 |  CAPANEMA C G S,  DE OLIVEIRA G S,  SILVA F A, et al. Combining recurrent and Graph Neural Networks to predict the next place's category[J]. Ad hoc networks, 2023, 138: ID 103016. | 
																													
																						| 12 |  ULLAH I,  MANZO M,  SHAH M, et al. Graph convolutional networks: Analysis, improvements and results[J]. Applied intelligence, 2022, 52(8): 9033-9044. | 
																													
																						| 13 |  KIPF T N,  WELLING M. Variational graph auto-encoders[EB/OL]. arXiv: 1611.07308, 2016. | 
																													
																						| 14 |  VELIČKOVIĆ P,  CUCURULL G,  CASANOVA A, et al. Graph attention networks[EB/OL]. arXiv: 1710.10903, 2017. | 
																													
																						| 15 |  SAHILI ZAL,  AWAD M. Spatio-temporal graph neural networks: A survey[EB/OL]. arXiv: 2301.10569, 2023. | 
																													
																						| 16 |  ZHANG X,  ZHANG C X,  GUO J T, et al. Graph attention network with dynamic representation of relations for knowledge graph completion[J]. Expert systems with applications, 2023, 219: ID 119616. | 
																													
																						| 17 |  FOROUTAN P,  LAHMIRI S. Deep learning-based spatial-temporal graph neural networks for price movement classification in crude oil and precious metal markets[J]. Machine learning with applications, 2024, 16: ID 100552. | 
																													
																						| 18 |  GAO Y J,  LIU X Z,  WU J Y, et al. ClusterEA: Scalable entity alignment with stochastic training and normalized mini-batch similarities[EB/OL]. arXiv: 2205.10312, 2022. | 
																													
																						| 19 |  ZHANG Y Y,  FANG Q,  QIAN S S, et al. Multi-modal multi-relational feature aggregation network for medical knowledge representation learning[C]// Proceedings of the 28th ACM International Conference on Multimedia. New York, USA: ACM, 2020: 3956-3965. | 
																													
																						| 20 |  HANG M Y,  NEVILLE J,  RIBEIRO B. A collective learning framework to boost GNN expressiveness for node classification[EB/OL]. arXiv: 2003.12169, 2020. | 
																													
																						| 21 |  ZHAI W H,  ZUBIAGA A,  LIU B Q, et al. Towards faithful knowledge graph explanation through deep alignment in commonsense question answering[C]// Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. San Diego, USA: ACL, 2024: 18920-18930. | 
																													
																						| 22 |  LEE C H,  KIM J,  JEONG Y, et al. Can we utilize pre-trained language models within causal discovery algorithms? [EB/OL]. arXiv: 2311.11212, 2023. | 
																													
																						| 23 |  YU C D D,  VILLAVERDE J F. Avocado ripeness classification using graph neural network[C]// 2022 14th International Conference on Computer and Automation Engineering (ICCAE). Piscataway, New Jersey, USA: IEEE, 2022: 74-79. | 
																													
																						| 24 |  MA L,  HUANG X,  JIAO L M, et al. Soil moisture prediction based on spatiotemporal graph convolution deep learning[C]// 2024 IEEE 4th International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA). Piscataway, New Jersey, USA: IEEE, 2024: 1257-1261. | 
																													
																						| 25 |  HAMILTON W L,  YING R,  LESKOVEC J. Inductive representa‐tion learning on large graphs[C]// Proceedings of the 31st Interna‐tional Conference on Neural Information Processing Systems. Red Hook, New York, USA: Curran Associates Inc., 2017: 1025-1035. | 
																													
																						| 26 |  TAN Q Y,  ZHANG X,  HUANG X, et al. Collaborative graph neural networks for attributed network embedding[J]. IEEE transactions on knowledge and data engineering, 2023, 36: 972-986. | 
																													
																						| 27 |  ZHANG H,  LI P,  ZHANG R, et al. Embedding graph auto-encoder for graph clustering[J]. IEEE transactions on neural networks and learning systems, 2023, 34(11): 9352-9362. | 
																													
																						| 28 |  SUNDHAR S,  SHARMA R,  MAHESHWARI P, et al. Enhancing leaf disease classification using GAT-GCN hybrid model[EB/OL]. arXiv: 2504.04764, 2025. | 
																													
																						| 29 |  KONG J L,  WANG H X,  YANG C C, et al. A spatial feature-enhanced attention neural network with high-order pooling representation for application in pest and disease recognition[J]. Agriculture, 2022, 12(4): ID 500. | 
																													
																						| 30 |  WANG K Y,  HAN Y Y,  ZHANG Y Q, et al. Maize yield prediction with trait-missing data via bipartite graph neural network[J]. Frontiers in plant science, 2024, 15: ID 1433552. | 
																													
																						| 31 |  YE Z C,  ZHAI X,  SHE T L, et al. Winter wheat yield prediction based on the ASTGNN model coupled with multi-source data[J]. Agronomy, 2024, 14(10): ID 2262. | 
																													
																						| 32 |  LIRA H,  MARTÍ L,  SANCHEZ-PI N. Frost forecasting model using graph neural networks with spatio-temporal attention[EB/OL]. (2021-06-15)[2024-12-20].  | 
																													
																						| 33 |  ZHONG L F,  WU J,  LI Q, et al. A comprehensive survey on automatic knowledge graph construction[J]. ACM computing surveys, 2024, 56(4): 1-62. | 
																													
																						| 34 |  SHI Z W,  LI B. Graph neural networks and attention-based CNN-LSTM for protein classification[EB/OL]. arXiv: 2204.09486, 2022. | 
																													
																						| 35 |  YUN S,  JEONG M,  KIM R, et al. Graph transformer networks[EB/OL]. arXiv: 1911.06455, 2019. | 
																													
																						| 36 |  LOURDUSAMY R,  MATTAM X J. Knowledge graph using resource description framework and connectionist theory[J]. Journal of physics: Conference series, 2020, 1427(1): ID 012001. | 
																													
																						| 37 |  SOWA J F. Principles of Semantic Networks: Explorations in the Representation of Knowledge[M]. Amsterdam: Elsevier, 1991. | 
																													
																						| 38 |  DELOULE F,  ROCHE C. Ontologies and knowledge representation[C]// 1995 IEEE International Conference on Systems, Man and Cybernetics. Piscataway, New Jersey, USA: IEEE, 1995: 3857-3862. | 
																													
																						| 39 |  BORDES A,  USUNIER N,  GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. San Francisco, USA: Curran Associates Inc., 2013: 2787-2795. | 
																													
																						| 40 |  MA J T,  LIU B,  LI K L, et al. A review of graph neural networks and pretrained language models for knowledge graph reasoning[J]. Neurocomputing, 2024, 609: ID 128490. | 
																													
																						| 41 |  ZHANG M H,  LI P,  XIA Y L, et al. Labeling trick: A theory of using graph neural networks for multi-node representation learning[EB/OL]. arXiv: 2010.16103, 2020. | 
																													
																						| 42 |  FAN S H,  ZHU J X,  HAN X T, et al. Metapath-guided heterogeneous graph neural network for intent recommendation[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM, 2019: 2478-2486. | 
																													
																						| 43 |  DU J L,  LIU G R,  GAO J, et al. Graph neural network-based entity extraction and relationship reasoning in complex knowledge graphs[EB/OL]. arXiv: 2411.15195, 2024. | 
																													
																						| 44 |  ZHOU J,  CUI G Q,  HU S D, et al. Graph neural networks: A review of methods and applications[J]. AI open, 2020, 1: 57-81. | 
																													
																						| 45 | 刘炜, 徐辉, 李卫民. 一种多模态知识图谱实体对齐方法[J]. 应用科学学报, 2024, 42(6): 1040-1051. | 
																													
																						|  |  LIU W,  XU H,  LI W M. A multimodal knowledge graph entity alignment method[J]. Journal of applied sciences, 2024, 42(6): 1040-1051. | 
																													
																						| 46 |  GOYAL A,  GUPTA V,  KUMAR M. Recent named entity recognition and classification techniques: A systematic review[J]. Computer science review, 2018, 29: 21-43. | 
																													
																						| 47 |  DING R X,  XIE P J,  ZHANG X Y, et al. A neural multi-digraph model for Chinese NER with gazetteers[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy. Stroudsburg, PA, USA: ACL, 2019: 1462-1467. | 
																													
																						| 48 |  GUI T,  ZOU Y C,  ZHANG Q, et al. A lexicon-based graph neural network for Chinese NER[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, PA, USA: ACL, 2019: 1040-1050. | 
																													
																						| 49 |  CHEN J,  XI X F,  SHENG V S, et al. Randomly wired graph neural network for Chinese NER[J]. Expert systems with applications, 2023, 227: ID 120245. | 
																													
																						| 50 |  CHEN M Q,  ZHANG Y,  KOU X Y, et al. R-GAT: Relational graph attention network for multi-relational graphs[EB/OL]. arXiv: 2109.05922, 2021. | 
																													
																						| 51 |  ZHANG D,  WEI S Z,  LI S S, et al. Multi-modal graph fusion for named entity recognition with targeted visual guidance[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(16): 14347-14355. | 
																													
																						| 52 |  GONG Y C,  LYU X Q,  YUAN Z, et al. GNN-based multimodal named entity recognition[J]. The computer journal, 2024, 67(8): 2622-2632. | 
																													
																						| 53 |  ZHANG Z X,  MAI W X,  XIONG H L, et al. A token-wise graph-based framework for multimodal named entity recognition[C]// 2023 IEEE International Conference on Multimedia and Expo (ICME). Piscataway, New Jersey, USA: IEEE, 2023: 2153-2158. | 
																													
																						| 54 |  REN Y M,  LI H,  LIU P P, et al. Owner name entity recognition in websites based on heterogeneous and dynamic graph transformer[J]. Knowledge and information systems, 2023, 65(10): 4411-4429. | 
																													
																						| 55 |  KHAN I Z,  SHEIKH A A,  SINHA U. Graph neural network and NER-based text summarization[EB/OL]. arXiv: 2402.05126, 2024. | 
																													
																						| 56 |  GUO Z J,  ZHANG Y,  LU W. Attention guided graph convolutional networks for relation extraction[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: ACL, 2019: 241-251. | 
																													
																						| 57 |  ZHONG Y,  SHEN B. Dual-stream dynamic graph structure network for document-level relation extraction[J]. Journal of king Saud university-computer and information sciences, 2024, 36(9): ID 102202. | 
																													
																						| 58 |  LI Z X,  SUN Y R,  ZHU J W, et al. Improve relation extraction with dual attention-guided graph convolutional networks[J]. Neural computing and applications, 2021, 33(6): 1773-1784. | 
																													
																						| 59 |  ZHAO Q H,  GAO T H,  GUO N. TSVFN: Two-Stage Visual Fusion Network for multimodal relation extraction[J]. Information processing & management, 2023, 60(3): ID 103264. | 
																													
																						| 60 |  WU T,  YOU X L,  XIAN X P, et al. Towards deep understanding of graph convolutional networks for relation extraction[J]. Data & knowledge engineering, 2024, 149: ID 102265. | 
																													
																						| 61 |  TIAN Z,  ZHAO X,  LI X W, et al. Multi-modal semantics fusion model for domain relation extraction via information bottleneck[J]. Expert systems with applications, 2024, 244: ID 122918. | 
																													
																						| 62 |  CHEN H,  HONG P F,  HAN W, et al. Dialogue relation extraction with document-level heterogeneous graph attention networks[EB/OL]. arXiv: 2009.05092, 2020. | 
																													
																						| 63 |  XUE F Z,  SUN A X,  ZHANG H, et al. GDPNet: Refining latent multi-view graph for relation extraction[EB/OL]. arXiv: 2012.06780, 2020. | 
																													
																						| 64 |  CARBONELL M,  RIBA P,  VILLEGAS M, et al. Named entity recognition and relation extraction with graph neural networks in semi structured documents[C]// 2020 25th International Conference on Pattern Recognition (ICPR). Piscataway, New Jersey, USA: IEEE, 2021: 9622-9627. | 
																													
																						| 65 |  KNEZ T,  ŽITNIK S. Event-centric temporal knowledge graph construction: A survey[J]. Mathematics, 2023, 11(23): ID 4852. | 
																													
																						| 66 |  GAO J Q,  LUO X F,  WANG H. Chinese causal event extraction using causality-associated graph neural network[J]. Concurrency and computation: Practice and experience, 2022, 34(3): ID e6572. | 
																													
																						| 67 |  LYU J W,  ZHANG Z Q,  JIN L, et al. HGEED: Hierarchical graph enhanced event detection[J]. Neurocomputing, 2021, 453: 141-150. | 
																													
																						| 68 |  GUO X,  POLANIA L F,  ZHU B, et al. Graph neural networks for image understanding based on multiple cues: Group emotion recognition and event recognition as use cases[C]// 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway, New Jersey, USA: IEEE, 2020: 2910-2919. | 
																													
																						| 69 | 井佩光, 宋晓艺, 苏育挺. 基于深度动态语义关联的短视频事件检测[J]. 激光与光电子学进展, 2024, 61(4): ID 0437002. | 
																													
																						|  |  JING P G,  SONG X Y,  SU Y T. Micro-video event detection based on deep dynamic semantic correlation[J]. Laser & optoelectronics progress, 2024, 61(4): ID 0437002. | 
																													
																						| 70 |  LIU L,  LIU M,  LIU S S, et al. Event extraction as machine reading comprehension with question-context bridging[J]. Knowledge-based systems, 2024, 299: ID 112041. | 
																													
																						| 71 |  MI J X,  HU P,  LI P. Event detection with dual relational graph attention networks[C]// Proceedings of the 29th International Conference on Computational Linguistics. College Park, USA: International Committee on Computational Linguistics, 2022: 1979-1989. | 
																													
																						| 72 |  YU C L,  WEN H M,  KO P C, et al. Automatic construction and optimization method of enterprise data asset knowledge graph based on graph attention network[J]. Journal of radiation research and applied sciences, 2024, 17(3): ID 101023. | 
																													
																						| 73 |  ZOU J,  WAN J,  ZHANG H, et al. A multi-hop path query answering model for knowledge graph based on neighborhood aggregation and transformer[J]. Journal of physics: Conference series, 2023, 2560(1): ID 012049. | 
																													
																						| 74 |  ZHANG Z,  ZHUANG F Z,  ZHU H S, et al. Relational graph neural network with hierarchical attention for knowledge graph completion[J]. Proceedings of the AAAI conference on artificial intelligence, 2020, 34(5): 9612-9619. | 
																													
																						| 75 |  SUN Z Q,  WANG C M,  HU W, et al. Knowledge graph alignment network with gated multi-hop neighborhood aggregation[J]. Proceedings of the AAAI conference on artificial intelligence, 2020, 34(1): 222-229. | 
																													
																						| 76 |  ZHANG Y Q,  ZHOU Z K,  YAO Q M, et al. AdaProp: Learning adaptive propagation for graph neural network based knowledge graph reasoning[EB/OL]. arXiv: 2205.15319, 2022. | 
																													
																						| 77 |  RAMZAN F. Subgraph retrieval for biomedical open-domain question answering: Unlocking the knowledge graph embedding power[D]. Bologna: University of Bologna, 2022. | 
																													
																						| 78 |  AN Y,  TANG H C,  JIN B, et al. KAMPNet: Multi-source medical knowledge augmented medication prediction network with multi-level graph contrastive learning[J]. BMC medical informatics and decision making, 2023, 23(1): ID 243. | 
																													
																						| 79 | 吴铮, 陈鸿昶, 张建朋. 基于双曲图注意力网络的知识图谱链路预测方法[J]. 电子与信息学报, 2022, 44(6): 2184-2194. | 
																													
																						|  |  WU Z,  CHEN H C,  ZHANG J P. Link prediction in knowledge graphs based on hyperbolic graph attention networks[J]. Journal of electronics & information technology, 2022, 44(6): 2184-2194. | 
																													
																						| 80 | 庞俊, 刘小琪, 谷峪, 等. 基于多粒度注意力网络的知识超图链接预测[J]. 软件学报, 2023, 34(3): 1259-1276. | 
																													
																						|  |  PANG J,  LIU X Q,  GU Y, et al. Knowledge hypergraph link prediction based on multi-granular attention network[J]. Journal of software, 2023, 34(3): 1259-1276. | 
																													
																						| 81 | ZEB A,  SAIF S,  CHEN J D, et al. Complex graph convolutional network for link prediction in knowledge graphs[J]. Expert systems with applications, 2022, 200: ID 116796. | 
																													
																						| 82 |  MAI S J,  ZHENG S J,  SUN Y, et al. Dynamic graph dropout for subgraph-based relation prediction[J]. Knowledge-based systems, 2022, 250: ID 109172. | 
																													
																						| 83 | 滕磊, 田炜, 靖琦东, 等. 基于子图特征融合的链接预测方法[J]. 软件导刊, 2024, 23(7): 58-63. | 
																													
																						|  |  TENG L,  TIAN W,  JING Q D, et al. Link prediction method based on sub-graph feature fusion[J]. Software guide, 2024, 23(7): 58-63. | 
																													
																						| 84 |  TONG V,  NGUYEN D Q,  PHUNG D, et al. Two-view graph neural networks for knowledge graph completion[EB/OL]. arXiv: 2112.09231, 2021. | 
																													
																						| 85 | 肖君超, 钟福利, 张金玲. 基于图神经网络链接预测与回归的新兴技术预测研究: 以人工智能技术为例[J]. 竞争情报, 2024, 20(5): 46-56. | 
																													
																						|  |  XIAO J C,  ZHONG F L,  ZHANG J L. Research on emerging technology prediction based on graph neural network link prediction and regression: Taking artificial intelligence technology as an example[J]. Competitive intelligence, 2024, 20(5): 46-56. | 
																													
																						| 86 | 杨冠灿, 行佳鑫, 鲁国轩, 等. 基于图神经网络的细粒度技术会聚预测方法研究[J]. 信息资源管理学报, 2023, 13(2): 95-107. | 
																													
																						|  |  YANG G C,  XING J X,  LU G X, et al. A fine-grained technology convergence prediction method based on graph neural networks[J]. Journal of information resources management, 2023, 13(2): 95-107. | 
																													
																						| 87 |  WU Y J,  ZHOU J T. A hierarchical and interlamination graph self-attention mechanism-based knowledge graph reasoning architecture[J]. Information sciences, 2025, 686: ID 121345. | 
																													
																						| 88 |  CUI L M,  SEO H,  TABAR M, et al. DETERRENT: Knowledge guided graph attention network for detecting healthcare misinformation[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM, 2020: 492-502. | 
																													
																						| 89 |  DONG X R,  ZHANG Y J,  PANG K, et al. Heterogeneous graph neural networks with denoising for graph embeddings[J]. Knowledge-based systems, 2022, 238: ID 107899. | 
																													
																						| 90 |  SUN K,  JIANG H J,  HU Y L, et al. Incorporating multi-level sampling with adaptive aggregation for inductive knowledge graph completion[J]. ACM transactions on knowledge discovery from data, 2024, 18(5): 1-16. | 
																													
																						| 91 |  ZHANG Q G,  DONG J N,  DUAN K Y, et al. Contrastive knowledge graph error detection[EB/OL]. arXiv: 2211.10030, 2022. | 
																													
																						| 92 | 桂梁, 徐遥, 何世柱, 等. 基于动态邻居选择的知识图谱事实错误检测方法[J]. 山东大学学报(理学版), 2024, 59(7): 76-84. | 
																													
																						|  |  GUI L,  XU Y,  HE S Z, et al. Factual error detection in knowledge graphs based on dynamic neighbor selection[J]. Journal of Shandong university (natural science), 2024, 59(7): 76-84. | 
																													
																						| 93 |  KOSASIH E E,  MARGAROLI F,  GELLI S, et al. Towards knowledge graph reasoning for supply chain risk management using graph neural networks[J]. International journal of production research, 2024, 62(15): 5596-5612. | 
																													
																						| 94 |  XIE B B,  MA X X,  WU J, et al. Heterogeneous graph neural network via knowledge relations for fake news detection[C]// 35th International Conference on Scientific and Statistical Database Management. New York, USA: ACM, 2023: 1-11. | 
																													
																						| 95 |  WANG S,  HUANG X,  CHEN C, et al. REFORM: Error-aware few-shot knowledge graph completion[C]// Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York, USA: ACM, 2021: 1979-1988. | 
																													
																						| 96 |  SHEN X X,  JIA A L,  SHEN S Q, et al. Helping the ineloquent farmers: Finding experts for questions with limited text in agricultural Q&A communities[J]. IEEE access, 2020, 8: 62238-62247. | 
																													
																						| 97 |  ZHAO M X,  JIA A L. A dual-attention heterogeneous graph neural network for expert recommendation in online agricultural question and answering communities[C]// 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD). Piscataway, New Jersey, USA: IEEE, 2022: 926-931. | 
																													
																						| 98 |  AYESHA BARVIN P,  SAMPRADEEPRAJ T. Crop recommendation systems based on soil and environmental factors using graph convolution neural network: A systematic literature review[J]. Engineering proceedings, 2023, 58(1): ID 97. | 
																													
																						| 99 |  ZHANG Q S,  LI B,  ZHANG Y, et al. Suitability evaluation of crop variety via graph neural network[J]. Computational intelligence and neuroscience, 2022, 2022: ID 5614974. | 
																													
																						| 100 |  GUPTA A,  SINGH A. Agri-GNN: A novel genotypic-topological graph neural network framework built on GraphSAGE for optimized yield prediction[EB/OL]. arXiv: 2310.13037, 2023. | 
																													
																						| 101 |  MARUTHAI S,  SELVANARAYANAN R,  THANARAJAN T, et al. Hybrid vision GNNs based early detection and protection against pest diseases in coffee plants[J]. Scientific reports, 2025, 15(1): ID 11778. | 
																													
																						| 102 |  ZHAO H L,  LUO P,  CUI W, et al. Geographical scenario knowledge-informed graph structure attention for image segmentation[J]. IEEE transactions on geoscience and remote sensing, 2025, 63: 1-16. | 
																													
																						| 103 |  ZHAO X Y,  CHEN B Y,  JI M X, et al. Implementation of large language models and agricultural knowledge graphs for efficient plant disease detection[J]. Agriculture, 2024, 14(8): ID 1359. | 
																													
																						| 104 |  WANG M J,  HUO Y F,  ZHENG J H, et al. SC-TKGR: Temporal knowledge graph-based GNN for recommendations in supply chains[J]. Electronics, 2025, 14(2): ID 222. | 
																													
																						| 105 |  XU C J,  SU F L,  LEHMANN J. Time-aware graph neural network for entity alignment between temporal knowledge graphs[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: ACL, 2021: 8999-9010. | 
																													
																						| 106 |  CAI W Y,  LI M F,  SHI X H, et al. RE-SEGNN: Recurrent semantic evidence-aware graph neural network for temporal knowledge graph forecasting[J]. Science China information sciences, 2025, 68(2): ID 122104. | 
																													
																						| 107 |  FENG S L,  YE Z M,  LIU Q, et al. RPHF-GNN: Recurrent perception of history-future graph neural networks for temporal knowledge graph reasoning[J]. IEEE access, 2025: ID 1. | 
																													
																						| 108 |  HAN B,  QU T T,  JIANG J. GN-GCN: Grid neighborhood-based graph convolutional network for spatio-temporal knowledge graph reasoning[J]. ISPRS journal of photogrammetry and remote sensing, 2025, 220: 728-739. | 
																													
																						| 109 |  SUN J Z,  SHENG Y P,  HE L R, et al. CEGRL-TKGR: A causal enhanced graph representation learning framework for temporal knowledge graph reasoning[C]// Proceedings of Bridging Neurons and Symbols for Natural Language Processing and Knowledge Graphs Reasoning @ COLING 2025. Turin, Italy: ELRA and ICCL, 2025: 6-17. | 
																													
																						| 110 |  ZHOU H K,  ZHENG D,  NISA I, et al. TGL[J]. Proceedings of the VLDB endowment, 2022, 15(8): 1572-1580. | 
																													
																						| 111 |  PAREJA A,  DOMENICONI G,  CHEN J, et al. EvolveGCN: Evolving graph convolutional networks for dynamic graphs[J]. Proceedings of the AAAI conference on artificial intelligence, 2020, 34(4): 5363-5370. |