[1] | 陈晓明, 王程龙, 薄瑞 . 中国农药使用现状及对策建议[J]. 农药科学与管理, 2016(2):4-8. | [1] | Chen X, Wang C, Bo R . Current situation of Chinese pesticide application and policy suggestions[J]. Pesticide Science and Administration, 2016(2):4-8. | [2] | 杨陆强, 果霖, 朱加繁 , 等. 我国农用无人机发展概况与展望[J]. 农机化研究, 2017,39(8):6-11. | [2] | Yang L, Guo L, Zhu J , et al. The development situation and prospect of agricultural UAV in China[J]. Journal of Agricultural Mechanization Research, 2017,39(8):6-11. | [3] | 娄尚易, 薛新宇, 顾伟 , 等. 农用植保无人机的研究现状及趋势[J]. 农机化研究, 2017(12):1-6. | [3] | Lou S, Xue X, Gu W , et al. Current status and trends of agricultural plant protection unmanned aerial vehicle[J]. Journal of Agricultural Mechanization Research, 2017 12):1-6. | [4] | 周志艳, 臧英, 罗锡文 , 等. 中国农业航空植保产业技术创新发展战略[J]. 农业技术与装备, 2014(5):19-25. | [4] | Zhou Z, Zang Y, Luo X , et al. Development strategy of technological innovation and innovation of Chinese agricultural aviation plant protection industry[J]. Agricultural Technology and Equipment, 2014(5):19-25. | [5] | 尹选春, 兰玉彬, 文晟 , 等. 日本农业航空技术发展及对我国的启示[J]. 华南农业大学学报, 2018,39(02):1-8. | [5] | Yin X, Lan Y, Wen S , et al. The development of Japan agricultural aviation technology and its enlightenment for China[J]. Journal of South China Agricultural University, 2008,39(02):1-8. | [6] | Gu K, Xing M, Ri G . Evapotranspiration estimate in microscale at Onigi rice terraces using UAV[J]. Research Report of Engineering Research Department of University of Nagasaki, 2018,48. | [7] | 高林, 杨贵军, 于海洋 , 等. 基于无人机高光谱遥感的冬小麦叶面积指数反演[J]. 农业工程学报, 2016,32(22):113-120. | [7] | Gao L, Yang G, Yu H , et al. Retrieving winter wheat leaf area index based on unmanned aerial vehicle hyperspectral remote sensing[J]. Transactions of the CSAE, 2016,32(22):113-120. | [8] | 刘建刚, 赵春江, 杨贵军 , 等. 无人机遥感解析田间作物表型信息研究进展[J]. 农业工程学报, 2016,32(24):98-106. | [8] | Liu J, Zhao C, Yang G , et al. Review of field-based phenotyping by unmanned aerial vehicle remote sensing platform[J]. Transactions of the CSAE, 2016,32(24):98-106. | [9] | Yue J, Feng H, Yang G , et al. A comparison of regression techniques for estimation of above-ground winter wheat biomass using near-surface spectroscopy[J]. Remote Sensing, 2018,10(1):66. | [10] | 高林, 杨贵军, 李红军 , 等. 基于无人机数码影像的冬小麦叶面积指数探测研究[J]. 中国生态农业学报, 2016,24(9):1254-1264. | [10] | Gao L, Yang G, Li H , et al. Winter wheat LAI estimation using unmanned aerial vehicle RGB-imaging[J]. Chinese Journal of Eco-Agriculture, 2016,24(9):1254-1264. | [11] | Patrick A, Pelham S, Culbreath A , et al. High throughput phenotyping of tomato spot wilt disease in peanuts using unmanned aerial systems and multispectral imaging[J]. IEEE Instrumentation & Measurement Magazine, 2017,20(3):4-12. | [12] | Albetis J, Duthoit S, Guttler F , et al. Detection of Flavescence dorée Grapevine disease using unmanned aerial vehicle (UAV) multispectral imagery[J]. Remote Sensing, 2017,9(4):308. | [13] | Torres-S ãn J, Lã3Pez-Granados F, De Castro A I , et al. Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management[J]. PLoS One, 2013,8(3):e58210. | [14] | Kussul N, Lavreniuk M, Skakun S , et al. Deep learning classification of land cover and crop types using remote sensing data[J]. IEEE Geoscience and Remote Sensing Letters, 2017,14(5):778-782. | [15] | Chen S W, Shivakumar S S, Dcunha S , et al. Counting apples and oranges with deep learning: a data-driven approach[J]. IEEE Robotics and Automation Letters, 2017,2(2):781-788. | [16] | 孙钰, 周焱, 袁明帅 , 等. 基于深度学习的森林虫害无人机实时监测方法[J]. 农业工程学报, 2018,34(21):82-89. | [16] | Sun Y, Zhou Y, Yuan M , et al. UAV real-time monitoring for forest pest based on deep learning[J]. Transactions of the CSAE, 2018,34(21):82-89. | [17] | Zhu H, Yuen K V, Mihaylova L , et al. Overview of environment perception for intelligent vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2017,18(10):2584-2601. | [18] | Xu M, Tang Q, Cen L , et al. Research on relative height measurement based on multi-sensor fusion technology[C]. In: 2nd Proceedings of Frontiers of Sensors Technologies (ICFST), 2017 2nd International Conference on. 14-16 April 2017. Shenzhen, China. | [19] | Pierzcha?a M, Giguère P, Astrup R . Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM[J]. Computers and Electronics in Agriculture, 2018,145:217-225. | [20] | Gee T, James J, Mark W V D , et al. Lidar guided stereo simultaneous localization and mapping (SLAM) for UAV outdoor 3-D scene reconstruction[C]. International Conference on Image and Vision Computing New Zealand. IEEE, 2017: 1-6. | [21] | Fink G K . Observer design for visual inertial SLAM scale on a quadrotor UAV[C]. International Conference on Unmanned Aircraft Systems. 2017. | [22] | Shinohara T, Namerikawa T . SLAM for a small UAV with compensation for unordinary observations and convergence analysis[C]. Society of Instrument and Control Engineers of Japan. IEEE, 2016: 1252-1257. | [23] | Hewitt R A, Marshall J A . Towards intensity-augmented SLAM with LiDAR and ToF sensors[C]//International Conference on Intelligent Robots and Systems. IEEE, 2016: 1956-1961. | [24] | Habibie N, Nugraha A M, Anshori A Z , et al. Fruit mapping mobile robot on simulated agricultural area in Gazebo simulator using simultaneous localization and mapping SLAM)[C]. International Symposium on Micro-Nanomechatronics and Human Science. 2017: 1-7. | [25] | Trujillo J C, Munguia R, Guerra E , et al. Cooperative monocular-based SLAM for multi-UAV systems in GPS-denied environments[J]. Sensors, 2017,1(10):737. | [26] | Schmuck P, Chli M . Multi-UAV collaborative monocular SLAM[C]. IEEE International Conference on Robotics and Automation. IEEE, 2017: 3863-3870. | [27] | Hewitt A J, Johnson D R, Fish J D , et al. Development of the spray drift task force database for aerial applications[J]. Environmental Toxicology & Chemistry, 2002,21(3):648-658. | [28] | Zhang S, Xue X, Sun Z , et al. Downwash distribution of single-rotor unmanned agricultural helicopter on hovering state[J]. International Journal of Agricultural & Biological Engineering, 2017,10(5):14-24. | [29] | Chen S, Lan Y, Li J , et al. Effect of wind field below unmanned helicopter on droplet deposition distribution of aerial spraying[J]. International Journal of Agricultural and Biological Engineering, 2017,10(3):67-77. | [30] | Teske M E, Thistle H W, Schou W C , et al. A review of computer models for pesticide deposition prediction[J]. Transactions of the ASABE, 2011,54(3):789-801. | [31] | Zhang B, Tang Q, Chen L , et al. Numerical simulation of spray drift and deposition from a crop spraying aircraft using a CFD approach[J]. Biosystems Engineering, 2018,166:184-199. | [32] | Zhang B, Tang Q, Chen L , et al. Numerical simulation of wake vortices of crop spraying aircraft close to the ground[J]. Biosystems Engineering, 2016,145:52-64. | [33] | Lakshminarayan V K, Kalra T S, Baeder J D . Detailed computational investigation of a hovering microscale rotor in ground effect[J]. AIAA Journal, 2013,51(4):893-909. | [34] | Anthony L, Steven A . Break-up of sprayed emulsions from flat-fan nozzles using a hole kinematics model[J]. Biosystems Engineering, 2018,169:104-114. | [35] | Faial B S, Freitas H, Gomes P H , et al. An adaptive approach for UAV-based pesticide spraying in dynamic environments[J]. Computers and Electronics in Agriculture, 2017,138(C):210-223. | [36] | Lakshminarayan V K, Kalra T S, Baeder J D . Detailed computational investigation of a hovering microscale rotor in ground effect[J]. AIAA Journal, 2013,51(4):893-909. | [37] | Yang F, Xue X, Zhang L , et al. Numerical simulation and experimental verification on downwash air flow of six-rotor agricultural unmanned aerial vehicle in hover[J]. International Journal of Agricultural and Biological Engineering, 2017,10(4):41-53. | [38] | 秦维彩 . 单旋翼植保无人机喷雾参数优化研究[D]. 镇江:江苏大学, 2017. | [38] | Qin W . Research on spraying optimization for single-rotor plant protection UAV[D]. Zhenjiang: Jiangsu University, 2017. | [39] | 王大帅, 张俊雄, 李伟 , 等. 植保无人机动态变量施药系统设计与试验[J]. 农业机械学报, 2017,48(5):86-93. | [39] | Wang D, Zhang J, Li W , et al. Design and test of dynamic variable spraying system of plant protection UAV[J]. Transactions of the CSAM, 2017,48(5):86-93. | [40] | 王昌陵, 宋坚利, 何雄奎 , 等. 植保无人机飞行参数对施药雾滴沉积分布特性的影响[J]. 农业工程学报, 2017,33(23):109-116. | [40] | Wang C, Song J, He X , et al. Effect of flight parameters on distribution characteristics of pesticide spraying droplets deposition of plant-protection unmanned aerial vehicle[J]. Transactions of the CSAE, 2017,33(23):109-116. | [41] | 王玲 . 多旋翼植保无人机低空雾滴沉积规律及变量喷施测控技术[D]. 北京:中国农业大学, 2017. | [41] | Wang L . Research on low-altitude droplets deposition rule and technology of variable spraying measurement and control system based on multi-rotor crop protection UAV[D]. Beijing: China Agricultural University, 2017. | [42] | 王玲, 兰玉彬 , Hoffmann W C, 等. 微型无人机低空变量喷药系统设计与雾滴沉积规律研究[J]. 农业机械学报, 2016,47(1):15-22. | [42] | Wang L, Lan Y, Hoffmann W C , et al. Design of variable spraying system and influencing factors on droplets deposition of small UAV[J]. Transactions of the CSAM, 2016,47(1):15-22. | [43] | 茹煜, 金兰, 周宏平 , 等. 航空施药旋转液力雾化喷头性能试验[J]. 农业工程学报, 2014,30(3):50-55. | [43] | Ru Y, Jin L, Zhou H , et al. Performance experiment of rotary hydraulic atomizing nozzle for aerial spraying application[J]. Transactions of the CSAE, 2014,30(3):50-55. | [44] | 樊荣, 杨福增 . 植保常用扇形雾喷头系列型谱模型研究[J]. 山西农业大学学报(自然科学版), 2016,36(7):524-528. | [44] | Fan R, Yang F . The research on series spectrum model of fan-spray nozzle in plant protection[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2016,36(7):524-528. | [45] | 刘武兰, 周志艳, 陈盛德 , 等. 航空静电喷雾技术现状及其在植保无人机中应用的思考[J]. 农机化研究, 2018,40(5):1-9. | [45] | Liu W, Zhou Z, Chen S , et al. Status of aerial electrostatic spraying technology and its application in plant protection UAV[J]. Journal of Agricultural Mechanization Research, 2018,40(5):1-9. | [46] | 王士林, 何雄奎, 宋坚利 , 等. 双极性接触式航空机载静电喷雾系统荷电与喷雾效果试验[J]. 农业工程学报, 2018,34(7):82-89. | [46] | Wang S, He X, Song J , et al. Charging and spraying performance test of bipolar contact electrostatic spraying system for unmanned aerial vehicle[J]. Transactions of the CSAE, 2018,34(7):82-89. | [47] | Daggupati N P . Assessment of the varitarget nozzle for variable rate application of liquid crop protection products[D]. India: ANGR Agricultural University, 2007. | [48] | Funseth T G, Mercer D S, Humpal R A. Sprayer pulsing nozzle flow control using rotational step positions[P]. US, 2014. http://www. faqs. org /patents /app | [49] | Yu X, Roppel T A, Hung J Y . An optimization approach for planning robotic field coverage[C]. IECON 2015, Conference of the IEEE Industrial Electronics Society. IEEE, 2015: 004032-004039. | [50] | Pham T H, Bestaoui Y, Mammar S . Aerial robot coverage path planning approach with concave obstacles in precision agriculture[C]. The Workshop on Research. 2017: 43-48. | [51] | 尧李慧, 蔡晓华, 田雷 , 等. 自走式智能牛舍清洁机器人路径设计与研究[J]. 农机化研究, 2018,40(1):51-56. | [51] | Yao L, Cai X, Tian L , et al. Design and research of automatic barn cleaner path planning[J]. Journal of Agricultural Mechanization Research, 2018,40(1):51-56. | [52] | Cai Z, Li S, Gan Y , et al. Research on complete coverage path planning algorithms based on A* algorithms[J]. Open Cybernetics & Systemics Journal, 2014,8(1):418-426. | [53] | 徐博, 陈立平, 谭彧 , 等. 基于无人机航向的不规则区域作业航线规划算法与验证[J]. 农业工程学报, 2015(23):173-178. | [53] | Xu B, Chen L, Tan Y , et al. Route planning algorithm and verification based on UAV operation path angle in irregular area[J]. Transactions of the CSAE, 2015(23):173-178. | [54] | 王宇, 陈海涛, 李煜 , 等. 基于Grid-GSA算法的植保无人机路径规划方法[J]. 农业机械学报, 2017,48(7):29-37. | [54] | Wang Y, Chen H, Li Y , et al. Path planning method based on grid-GSA for plant protection UAV[J]. Transactions of the CSAM, 2017,48(7):29-37. | [55] | 徐博 . 植保无人机航线规划方法研究[D]. 北京: 中国农业大学, 2017. | [55] | Xu B . Research on route planning for plant protection unmanned aerial vehicles[D]. Beijing: China Agricultural University, 2017. | [56] | Luo H, Niu Y, Zhu M , et al. Optimization of pesticide spraying tasks via multi-UAVs using genetic algorithm[J]. Mathematical Problems in Engineering, 2017, 2017: 7139157, 1-16. | [57] | Franz E, Bouse L F, Carlton J B , et al. Aerial spray deposit relations with plant canopy and weather parameters[J]. Transactions of the ASABE, 1998,41(4):959-966. | [58] | 张瑞瑞, 文瑶, 伊铜川 , 等. 航空施药雾滴沉积特性光谱分析检测系统研发与应用[J]. 农业工程学报, 2017,33(24):80-87. | [58] | Zhang R, Wen Y, Yi T , et al. Development and application of aerial spray droplets deposition performance measurement system based on spectral analysis technology[J]. Transactions of the CSAE, 2017,33(24):80-87. | [59] | 张东彦, 兰玉彬, 王秀 , 等. 基于中分辨卫星影像的农用航空喷药效果评估[J]. 光谱学与光谱分析, 2016,36(6):1971-1977. | [59] | Zhang D, Lan Y, Wang X , et al. Assessment of Aerial agrichemical spraying effect using moderate-resolution satellite imagery[J]. Spectroscopy and Spectral Analysis, 2016,36(6):1971-1977. | [60] | 张瑞瑞, 陈立平, 兰玉彬 , 等. 航空施药中雾滴沉积传感器系统设计与实验[J]. 农业机械学报, 2014,45(8):123-127. | [60] | Zhang R, Chen L, Lan Y , et al. Development of a deposit sensing system for aerial spraying application[J]. Transactions of the CSAM, 2014,45(8):123-127. | [61] | 吴超琼, 赵利, 梁钢 , 等. 基于北斗导航系统的无人机飞行监管系统设计[J]. 测控技术, 2017,36(8):66-69. | [61] | Wu C, Zhao L, Liang G , et al. Design of UAV flight supervision system based on Beidou navigation system[J]. Measurement & Control Technology, 2017,36(8):66-69. | [62] | Cambra C, Sendra S, Lloret J , et al. An IoT service-oriented system for agriculture monitoring[C]. IEEE International Conference on Communications. IEEE, 2017: 1-6. |
|