Smart Agriculture ›› 2025, Vol. 7 ›› Issue (1): 111-123.doi: 10.12133/j.smartag.SA202410019
• Topic--Intelligent Agricultural Knowledge Services and Smart Unmanned Farms (Part 2) • Previous Articles Next Articles
YANG Xinting2,3, HU Huan1,2,3, CHEN Xiao1,2,3, LI Wenzheng1,2,3, ZHOU Zijie2,3,4, LI Wenyong2,3()
Received:
2024-10-21
Online:
2025-01-30
Foundation items:
About author:
YANG Xinting, E-mail: yangxt@nercita.org.cn
corresponding author:
CLC Number:
YANG Xinting, HU Huan, CHEN Xiao, LI Wenzheng, ZHOU Zijie, LI Wenyong. Lightweight Detection and Recognition Model for Small Target Pests on Sticky Traps in Multi-Source Scenarios[J]. Smart Agriculture, 2025, 7(1): 111-123.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202410019
Table 1
Dataset details under 5×5 segmentation ratio
场景 | 数据集 | 类型 | 图像数量/张 | 小图数量/张 | 小图大小/pixels | 粉虱数量/只 | 蓟马数量/只 |
---|---|---|---|---|---|---|---|
室内 | IN-Dataset | 训练集 | 48 | 1 200 | 800×600 | 5 567 | 3 743 |
验证集 | 6 | 150 | 800×600 | 1 743 | 1 247 | ||
测试集 | 6 | 150 | 800×600 | 623 | 2 096 | ||
室外 | OUT-Dataset | 训练集 | 48 | 1 200 | 800×600 | 10 713 | 2 845 |
验证集 | 6 | 150 | 800×600 | 1 659 | 1 212 | ||
测试集 | 6 | 150 | 800×600 | 1 545 | 1 176 | ||
混合 | IO-Dataset | 训练集 | 48 | 1 200 | 800×600 | 11 832 | 3 471 |
验证集 | 6 | 150 | 800×600 | 1 936 | 1 517 | ||
测试集 | 6 | 150 | 800×600 | 1 079 | 1 170 |
Table 2
Results of ablation test
模型 | EM block | VoV- GSCSP | Loss function | 精确度/% | 召回率/% | mAP@0.5/% | 参数量/M | 帧率/(帧/s) |
---|---|---|---|---|---|---|---|---|
YOLOv5s | — | — | — | 74.1 | 71.3 | 74.1 | 7.2 | 147.2 |
E-YOLOv5s | √ | — | — | 77.3 | 76.9 | 78.2 | 6.8 | 148.1 |
V-YOLOv5s | — | √ | — | 73.8 | 72.7 | 74.5 | 5.4 | 152.9 |
N-YOLOv5s | — | — | √ | 77.2 | 77.5 | 78.7 | 7.2 | 142.7 |
EV-YOLOv5s | √ | √ | — | 75.6 | 76.2 | 77.4 | 4.2 | 156.6 |
EN-YOLOv5s | √ | — | √ | 79.4 | 79.7 | 81.2 | 6.8 | 146.5 |
VN-YOLOv5s | — | √ | √ | 76.9 | 77.4 | 78.5 | 5.4 | 150.3 |
Our model | √ | √ | √ | 79.7 | 80.4 | 82.5 | 4.2 | 153.2 |
Table 4
Comparison results of different lightweight models
模型 | IN-Dataset | OUT-Dataset | IO-Dataset | ||||||
---|---|---|---|---|---|---|---|---|---|
mAP@0.5/% | 参数量/M | 帧率/(帧/s) | mAP@0.5/% | 参数量/M | 帧率/(帧/s) | mAP@0.5/% | 参数量/M | 帧率/(帧/s) | |
YOLOv5s | 74.1 | 7.2 | 147.2 | 63.5 | 7.2 | 134.8 | 66.7 | 7.2 | 139.9 |
ShuffleNetV2+YOLOv5s | 72.6 | 4.7 | 153.7 | 64.6 | 4.7 | 139.6 | 64.9 | 4.7 | 146.4 |
GhostNet+YOLOv5s | 74.8 | 5.5 | 144.6 | 62.2 | 5.5 | 131.5 | 65.8 | 5.5 | 142.3 |
MobileNetV3+YOLOv5s | 75.6 | 5.3 | 143.8 | 68.1 | 5.3 | 133.1 | 69.4 | 5.3 | 136.5 |
Our model | 82.5 | 4.2 | 153.2 | 70.8 | 4.2 | 140.3 | 74.7 | 4.2 | 144.2 |
Table 6
Comparison results of the improved lightweight detection and recognition model of small target pests at different densities
场景 | 密度 | 测试图数量/张 | 精确度/% | 召回率/% | mAP@0.5/% |
---|---|---|---|---|---|
室内 | 低密度 | 50 | 81.9 | 82.2 | 83.8 |
中密度 | 50 | 80.2 | 79.8 | 81.5 | |
高密度 | 50 | 73.7 | 74.2 | 75.4 | |
室外 | 低密度 | 50 | 74.2 | 73.3 | 74.5 |
中密度 | 50 | 71.6 | 70.5 | 72.4 | |
高密度 | 50 | 69.1 | 70.4 | 70.9 | |
混合 | 低密度 | 50 | 76.5 | 75.8 | 77.1 |
中密度 | 50 | 75.3 | 74.9 | 76.2 | |
高密度 | 50 | 70.2 | 70.6 | 71.8 |
Table 7
Comparative results of the improved lightweight detection and recognition model in different test scenarios
模型 | 训练集 | 测试集(mAP@0.5/%) | ||
---|---|---|---|---|
IN-Dataset-Test set | OUT-Dataset-Test set | IO-Dataset-Test set | ||
IN-Model | IN-Dataset-Train set | 82.5 | 77.2 | 80.5 |
OUT-Model | OUT-Dataset-Train set | 75.7 | 70.8 | 74.3 |
IO-Model | IO-Dataset-Train set | 78.4 | 75.1 | 74.7 |
1 |
吕秀英. 农业小虫蓟马的危害与综合防控技术[J]. 现代农村科技, 2023(9): 31-32.
|
|
|
2 |
罗宏伟, 冯钦, 王建波, 等. 小巢粉虱的危害程度调查[J]. 农业科技通讯, 2022(1): 137-139.
|
|
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
张博, 张苗辉, 陈运忠. 基于空间金字塔池化和深度卷积神经网络的作物害虫识别[J]. 农业工程学报, 2019, 35(19): 209-215.
|
|
|
19 |
朱德利, 文瑞, 熊俊逸. 融合坐标注意力机制的轻量级玉米花丝检测[J]. 农业工程学报, 2023, 39(3): 145-153.
|
|
|
20 |
|
21 |
王泽钧, 马凤英, 张瑜, 等. 基于注意力机制和多尺度轻量型网络的农作物病害识别[J]. 农业工程学报, 2022, 38(Z): 176-183.
|
|
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|
28 |
|
29 |
|
30 |
|
31 |
|
[1] | WU Liuai, XU Xueke. Lightweight Tomato Leaf Disease and Pest Detection Method Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(1): 146-155. |
[2] | JIN Xuemeng, LIANG Xiyin, DENG Pengfei. Lightweight Daylily Grading and Detection Model Based on Improved YOLOv10 [J]. Smart Agriculture, 2024, 6(5): 108-118. |
[3] | LIU Yi, ZHANG Yanjun. ReluformerN: Lightweight High-Low Frequency Enhanced for Hyperspectral Agricultural Lancover Classification [J]. Smart Agriculture, 2024, 6(5): 74-87. |
[4] | HU Chengxi, TAN Lixin, WANG Wenyin, SONG Min. Lightweight Tea Shoot Picking Point Recognition Model Based on Improved DeepLabV3+ [J]. Smart Agriculture, 2024, 6(5): 119-127. |
[5] | WENG Zhi, LIU Haixin, ZHENG Zhiqiang. CSD-YOLOv8s: Dense Sheep Small Target Detection Model Based on UAV Images [J]. Smart Agriculture, 2024, 6(4): 42-52. |
[6] | ZHANG Ronghua, BAI Xue, FAN Jiangchuan. Crop Pest Target Detection Algorithm in Complex Scenes:YOLOv8-Extend [J]. Smart Agriculture, 2024, 6(2): 49-61. |
[7] | YANG Feng, YAO Xiaotong. Lightweighted Wheat Leaf Diseases and Pests Detection Model Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(1): 147-157. |
[8] | XIA Xue, CHAI Xiujuan, ZHANG Ning, ZHOU Shuo, SUN Qixin, SUN Tan. A Lightweight Fruit Load Estimation Model for Edge Computing Equipment [J]. Smart Agriculture, 2023, 5(2): 1-12. |
[9] | LI Yangde, MA Xiaohui, WANG Ji. Pineapple Maturity Analysis in Natural Environment Based on MobileNet V3-YOLOv4 [J]. Smart Agriculture, 2023, 5(2): 35-44. |
[10] | ZHAO Yu, REN Yiping, PIAO Xinru, ZHENG Danyang, LI Dongming. Lightweight Intelligent Recognition of Saposhnikovia Divaricata (Turcz.) Schischk Originality Based on Improved ShuffleNet V2 [J]. Smart Agriculture, 2023, 5(2): 104-114. |
[11] | LUO Qing, RAO Yuan, JIN Xiu, JIANG Zhaohui, WANG Tan, WANG Fengyi, ZHANG Wu. Multi-Class on-Tree Peach Detection Using Improved YOLOv5s and Multi-Modal Images [J]. Smart Agriculture, 2022, 4(4): 84-104. |
[12] | XIA Ye, LEI Xiaohui, QI Yannan, XU Tao, YUAN Quanchun, PAN Jian, JIANG Saike, LYU Xiaolan. Detection of Pear Inflorescence Based on Improved Ghost-YOLOv5s-BiFPN Algorithm [J]. Smart Agriculture, 2022, 4(3): 108-119. |
[13] | Xia Xue, Sun Qixin, Shi Xiao, Chai Xiujuan. Apple detection model based on lightweight anchor-free deep convolutional neural network [J]. Smart Agriculture, 2020, 2(1): 99-110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||