Smart Agriculture ›› 2023, Vol. 5 ›› Issue (2): 161-171.doi: 10.12133/j.smartag.SA202304013
• Overview Article • Previous Articles
MAO Kebiao1,2,3(), ZHANG Chenyang4, SHI Jiancheng5, WANG Xuming2, GUO Zhonghua2, LI Chunshu2, DONG Lixin6, WU Menxin7, SUN Ruijing6, WU Shengli6, JI Dabin3, JIANG Lingmei8, ZHAO Tianjie3, QIU Yubao3, DU Yongming3, XU Tongren8
Received:
2023-04-24
Online:
2023-06-30
corresponding author:
MAO Kebiao, E-mail: maokebiao@caas.cn
Supported by:
CLC Number:
MAO Kebiao, ZHANG Chenyang, SHI Jiancheng, WANG Xuming, GUO Zhonghua, LI Chunshu, DONG Lixin, WU Menxin, SUN Ruijing, WU Shengli, JI Dabin, JIANG Lingmei, ZHAO Tianjie, QIU Yubao, DU Yongming, XU Tongren. The Paradigm Theory and Judgment Conditions of Geophysical Parameter Retrieval Based on Artificial Intelligence[J]. Smart Agriculture, 2023, 5(2): 161-171.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202304013
Table 1
Retrieval errors of surface temperature for band 29-31-32 combination
隐含层 | 隐含节点 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
600 | 700 | 800 | 900 | |||||||||
M | SD | R | M | SD | R | M | SD | R | M | SD | R | |
7 | 1.51 | 1.41 | 0.912 | 1.32 | 1.25 | 0.985 | 1.26 | 1.84 | 0.95 | 1.36 | 1.23 | 0.961 |
8 | 1.42 | 1.32 | 0.925 | 1.22 | 1.21 | 0.985 | 1.24 | 1.81 | 0.951 | 1.61 | 1.56 | 0.960 |
9 | 1.33 | 1.25 | 0.932 | 1.13 | 1.17 | 0.988 | 1.21 | 1.32 | 0.963 | 1.37 | 1.36 | 0.962 |
10 | 1.27 | 2.04 | 0.912 | 1.23 | 2.48 | 0.910 | 2.46 | 3.11 | 0.879 | 2.34 | 3.77 | 0.896 |
Table 2
Retrieval errors of surface temperature for band 28-29-31-32 combination
隐含层 | 隐含节点 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
600 | 700 | 800 | 900 | |||||||||
M | SD | R | M | SD | R | M | SD | R | M | SD | R | |
7 | 0.76 | 0.68 | 0.987 | 0.89 | 1.13 | 0.984 | 0.77 | 0.71 | 0.988 | 0.66 | 0.68 | 0.987 |
8 | 0.97 | 2.25 | 0.956 | 0.82 | 0.84 | 0.986 | 0.53 | 0.58 | 0.991 | 0.71 | 0.72 | 0.985 |
9 | 0.79 | 0.78 | 0.986 | 0.82 | 0.79 | 0.986 | 0.45 | 0.53 | 0.998 | 0.78 | 0.73 | 0.981 |
10 | 0.83 | 0.89 | 0.986 | 0.71 | 0.78 | 0.987 | 1.03 | 2.63 | 0.928 | 1.14 | 1.56 | 0.963 |
Table 3
Retrieval errors of surface temperature for band 27-28-29-31-32 combination
隐含层 | 隐含节点 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
600 | 700 | 800 | 900 | |||||||||
M | SD | R | M | SD | R | M | SD | R | M | SD | R | |
7 | 0.64 | 0.68 | 0.993 | 0.58 | 0.59 | 0.995 | 0.61 | 0.69 | 0.995 | 0.76 | 0.88 | 0.979 |
8 | 0.61 | 0.67 | 0.995 | 0.62 | 0.93 | 0.993 | 0.66 | 0.85 | 0.978 | 0.48 | 0.54 | 0.998 |
9 | 0.62 | 0.68 | 0.994 | 0.65 | 1.02 | 0.991 | 0.73 | 0.97 | 0.965 | 0.44 | 0.52 | 0.999 |
10 | 0.65 | 0.88 | 0.978 | 0.64 | 1.12 | 0.99 | 0.48 | 0.61 | 0.998 | 0.56 | 0.89 | 0.997 |
Table 4
Retrieval errors of surface temperature for band 27-28-29-31-32-33 combination
隐含层 | 隐含节点 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
600 | 700 | 800 | 900 | |||||||||
M | SD | R | M | SD | R | M | SD | R | M | SD | R | |
7 | 0.68 | 0.69 | 0.991 | 0.65 | 0.67 | 0.991 | 0.65 | 0.68 | 0.996 | 0.63 | 1.21 | 0.957 |
8 | 0.62 | 0.65 | 0.992 | 0.63 | 0.88 | 0.992 | 0.65 | 0.70 | 0.995 | 0.51 | 0.55 | 0.997 |
9 | 0.64 | 0.66 | 0.991 | 0.68 | 0.68 | 0.995 | 0.69 | 0.79 | 0.992 | 0.54 | 0.56 | 0.996 |
10 | 0.93 | 1.65 | 0.912 | 0.69 | 0.72 | 0.994 | 0.51 | 0.55 | 0.998 | 0.77 | 1.51 | 0.935 |
Table 5
Retrieval emissivity errors in band 31 for band 27-28-29-31-32 combination
隐含层 | 隐含节点 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
600 | 700 | 800 | 900 | |||||||||
M | SD | R | M | SD | R | M | SD | R | M | SD | R | |
7 | 0.006 | 0.007 | 0.971 | 0.006 | 0.007 | 0.976 | 0.008 | 0.086 | 0.926 | 0.005 | 0.006 | 0.981 |
8 | 0.007 | 0.008 | 0.965 | 0.005 | 0.006 | 0.980 | 0.005 | 0.007 | 0.979 | 0.007 | 0.023 | 0.953 |
9 | 0.005 | 0.007 | 0.972 | 0.005 | 0.007 | 0.978 | 0.008 | 0.021 | 0.944 | 0.005 | 0.006 | 0.983 |
10 | 0.005 | 0.006 | 0.976 | 0.004 | 0.007 | 0.981 | 0.004 | 0.005 | 0.991 | 0.007 | 0.007 | 0.961 |
Table 6
Retrieval emissivity errors in band 32 for band 27-28-29-31-32 combination
隐含层 | 隐含节点 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
600 | 700 | 800 | 900 | |||||||||
M | SD | R | M | SD | R | M | SD | R | M | SD | R | |
7 | 0.005 | 0.006 | 0.972 | 0.005 | 0.006 | 0.977 | 0.005 | 0.007 | 0.976 | 0.006 | 0.008 | 0.962 |
8 | 0.005 | 0.006 | 0.975 | 0.004 | 0.005 | 0.986 | 0.004 | 0.005 | 0.986 | 0.004 | 0.004 | 0.992 |
9 | 0.004 | 0.005 | 0.979 | 0.005 | 0.013 | 0.961 | 0.008 | 0.014 | 0.948 | 0.005 | 0.005 | 0.981 |
10 | 0.004 | 0.006 | 0.978 | 0.004 | 0.006 | 0.977 | 0.007 | 0.006 | 0.956 | 0.005 | 0.006 | 0.977 |
Table 7
Retrieval errors of near-surface air temperature for band 27-28-29-31-32 combination
隐含层 | 隐含节点 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
600 | 700 | 800 | 900 | |||||||||
M | SD | R | M | SD | R | M | SD | R | M | SD | R | |
7 | 1.64 | 1.55 | 0.958 | 1.52 | 1.55 | 0.962 | 1.58 | 1.66 | 0.963 | 1.68 | 1.78 | 0.966 |
8 | 1.58 | 1.64 | 0.953 | 1.56 | 1.58 | 0.958 | 1.56 | 1.65 | 0.964 | 1.60 | 1.72 | 0.958 |
9 | 1.44 | 1.51 | 0.959 | 1.49 | 1.54 | 0.965 | 1.56 | 1.63 | 0.968 | 1.69 | 1.77 | 0.959 |
10 | 1.47 | 1.49 | 0.961 | 1.42 | 1.46 | 0.975 | 1.46 | 1.52 | 0.967 | 1.64 | 1.69 | 0.969 |
Table 8
Retrieval errors of near-surface air temperature for band 27-28-29-31-32+LST+LSE31+LSE32 combination
隐含层 | 隐含节点 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
600 | 700 | 800 | 900 | |||||||||
M | SD | R | M | SD | R | M | SD | R | M | SD | R | |
7 | 1.14 | 1.36 | 0.976 | 1.19 | 1.37 | 0.975 | 1.14 | 1.38 | 0.981 | 1.16 | 1.36 | 0.978 |
8 | 1.25 | 1.34 | 0.968 | 1.18 | 1.38 | 0.975 | 1.19 | 1.41 | 0.978 | 1.03 | 1.16 | 0.979 |
9 | 1.22 | 1.32 | 0.971 | 1.26 | 1.41 | 0.964 | 0.93 | 1.05 | 0.980 | 1.19 | 1.37 | 0.975 |
10 | 1.19 | 1.29 | 0.976 | 1.14 | 1.36 | 0.977 | 0.81 | 0.91 | 0.984 | 1.22 | 1.34 | 0.973 |
Table 9
Retrieval errors of atmospheric water vapor content for band 27-28-29-31-32 combination
隐含层 | 隐含节点 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
600 | 700 | 800 | 900 | |||||||||
M | SD | R | M | SD | R | M | SD | R | M | SD | R | |
7 | 0.18 | 0.19 | 0.960 | 0.15 | 0.19 | 0.971 | 0.18 | 0.21 | 0.977 | 0.15 | 0.17 | 0.979 |
8 | 0.12 | 0.15 | 0.975 | 0.23 | 0.27 | 0.972 | 0.11 | 0.13 | 0.979 | 0.13 | 0.15 | 0.980 |
9 | 0.17 | 0.22 | 0.963 | 0.18 | 0.23 | 0.973 | 0.09 | 0.11 | 0.989 | 0.14 | 0.16 | 0.976 |
10 | 0.87 | 0.93 | 0.875 | 0.35 | 0.41 | 0.938 | 0.13 | 0.15 | 0.983 | 0.40 | 0.55 | 0.923 |
Table 10
Retrieval errors of atmospheric water vapor content for band 27-28-29-31-32+LST+LSE combination
隐含层 | 隐含节点 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
600 | 700 | 800 | 900 | |||||||||
M | SD | R | M | SD | R | M | SD | R | M | SD | R | |
7 | 0.15 | 0.17 | 0.976 | 0.18 | 0.21 | 0.971 | 0.17 | 0.18 | 0.975 | 0.14 | 0.16 | 0.976 |
8 | 0.15 | 0.16 | 0.976 | 0.21 | 0.23 | 0.969 | 0.09 | 0.11 | 0.991 | 0.15 | 0.17 | 0.977 |
9 | 0.14 | 0.16 | 0.977 | 0.23 | 0.25 | 0.967 | 0.11 | 0.15 | 0.979 | 0.08 | 0.09 | 0.992 |
10 | 0.17 | 0.19 | 0.975 | 0.15 | 0.19 | 0.971 | 0.09 | 0.11 | 0.990 | 0.11 | 0.12 | 0.989 |
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
毛克彪, 杨军, 韩秀珍, 等. 基于深度动态学习神经网络和辐射传输模型地表温度反演算法研究[J]. 中国农业信息, 2018, 30(5): 47-57.
|
|
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
毛克彪, 唐华俊, 李丽英, 等. 一个从MODIS数据同时反演地表温度和发射率的神经网络算法[J]. 遥感信息, 2007, 22(4): 9-15, 8.
|
|
|
21 |
毛克彪, 唐华俊, 陈仲新, 等. 一个用神经网络优化的针对ASTER数据反演地表温度和发射率的多波段算法[J]. 国土资源遥感, 2007, 19(3): 18-22.
|
|
|
22 |
|
23 |
|
24 |
付秀丽, 黎玲萍, 毛克彪, 等. 基于卷积神经网络模型的遥感图像分类[J]. 高技术通讯, 2017, 27(3): 203-212.
|
|
[1] | LI Hao, DU Yuqiu, XIAO Xingzhu, CHEN Yanxi. Remote Sensing Identification Method of Cultivated Land at Hill County of Sichuan Basin Based on Deep Learning [J]. Smart Agriculture, 2024, 6(3): 34-45. |
[2] | NIE Ganggang, RAO Honghui, LI Zefeng, LIU Muhua. Severity Grading Model for Camellia Oleifera Anthracnose Infection Based on Improved YOLACT [J]. Smart Agriculture, 2024, 6(3): 138-147. |
[3] | ZHANG Jing, ZHAO Zexuan, ZHAO Yanru, BU Hongchao, WU Xingyu. Oilseed Rape Sclerotinia in Hyperspectral Images Segmentation Method Based on Bi-GRU and Spatial-Spectral Information Fusion [J]. Smart Agriculture, 2024, 6(2): 40-48. |
[4] | PANG Chunhui, CHEN Peng, XIA Yi, ZHANG Jun, WANG Bing, ZOU Yan, CHEN Tianjiao, KANG Chenrui, LIANG Dong. HI-FPN: A Hierarchical Interactive Feature Pyramid Network for Accurate Wheat Lodging Localization Across Multiple Growth Periods [J]. Smart Agriculture, 2024, 6(2): 128-139. |
[5] | ZHANG Yuyu, BING Shuying, JI Yuanhao, YAN Beibei, XU Jinpu. Grading Method of Fresh Cut Rose Flowers Based on Improved YOLOv8s [J]. Smart Agriculture, 2024, 6(2): 118-127. |
[6] | ZHANG Jianhua, YAO Qiong, ZHOU Guomin, WU Wendi, XIU Xiaojie, WANG Jian. Intelligent Identification of Crop Agronomic Traits and Morphological Structure Phenotypes: A Review [J]. Smart Agriculture, 2024, 6(2): 14-27. |
[7] | GUO Wang, YANG Yusen, WU Huarui, ZHU Huaji, MIAO Yisheng, GU Jingqiu. Big Models in Agriculture: Key Technologies, Application and Future Directions [J]. Smart Agriculture, 2024, 6(2): 1-13. |
[8] | WANG Herong, CHEN Yingyi, CHAI Yingqian, XU Ling, YU Huihui. Image Segmentation Method Combined with VoVNetv2 and Shuffle Attention Mechanism for Fish Feeding in Aquaculture [J]. Smart Agriculture, 2023, 5(4): 137-149. |
[9] | LI Zhengkai, YU Jiahui, PAN Shijia, JIA Zefeng, NIU Zijie. Individual Tree Skeleton Extraction and Crown Prediction Method of Winter Kiwifruit Trees [J]. Smart Agriculture, 2023, 5(4): 92-104. |
[10] | TANG Hui, WANG Ming, YU Qiushi, ZHANG Jiaxi, LIU Liantao, WANG Nan. Root Image Segmentation Method Based on Improved UNet and Transfer Learning [J]. Smart Agriculture, 2023, 5(3): 96-109. |
[11] | PAN Weiting, SUN Mengli, YUN Yan, LIU Ping. Identification Method of Wheat Grain Phenotype Based on Deep Learning of ImCascade R-CNN [J]. Smart Agriculture, 2023, 5(3): 110-120. |
[12] | GUAN Bolun, ZHANG Liping, ZHU Jingbo, LI Runmei, KONG Juanjuan, WANG Yan, DONG Wei. The Key Issues and Evaluation Methods for Constructing Agricultural Pest and Disease Image Datasets: A Review [J]. Smart Agriculture, 2023, 5(3): 17-34. |
[13] | LONG Jianing, ZHANG Zhao, LIU Xiaohang, LI Yunxia, RUI Zhaoyu, YU Jiangfan, ZHANG Man, FLORES Paulo, HAN Zhexiong, HU Can, WANG Xufeng. Wheat Lodging Types Detection Based on UAV Image Using Improved EfficientNetV2 [J]. Smart Agriculture, 2023, 5(3): 62-74. |
[14] | LIU Yixue, SONG Yuyang, CUI Ping, FANG Yulin, SU Baofeng. Diagnosis of Grapevine Leafroll Disease Severity Infection via UAV Remote Sensing and Deep Learning [J]. Smart Agriculture, 2023, 5(3): 49-61. |
[15] | XIA Xue, CHAI Xiujuan, ZHANG Ning, ZHOU Shuo, SUN Qixin, SUN Tan. A Lightweight Fruit Load Estimation Model for Edge Computing Equipment [J]. Smart Agriculture, 2023, 5(2): 1-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||