Smart Agriculture ›› 2023, Vol. 5 ›› Issue (2): 161-171.doi: 10.12133/j.smartag.SA202304013
• Overview Article • Previous Articles
MAO Kebiao1,2,3(), ZHANG Chenyang4, SHI Jiancheng5, WANG Xuming2, GUO Zhonghua2, LI Chunshu2, DONG Lixin6, WU Menxin7, SUN Ruijing6, WU Shengli6, JI Dabin3, JIANG Lingmei8, ZHAO Tianjie3, QIU Yubao3, DU Yongming3, XU Tongren8
Received:
2023-04-24
Online:
2023-06-30
Foundation items:
corresponding author:
MAO Kebiao, E-mail: maokebiao@caas.cn
CLC Number:
MAO Kebiao, ZHANG Chenyang, SHI Jiancheng, WANG Xuming, GUO Zhonghua, LI Chunshu, DONG Lixin, WU Menxin, SUN Ruijing, WU Shengli, JI Dabin, JIANG Lingmei, ZHAO Tianjie, QIU Yubao, DU Yongming, XU Tongren. The Paradigm Theory and Judgment Conditions of Geophysical Parameter Retrieval Based on Artificial Intelligence[J]. Smart Agriculture, 2023, 5(2): 161-171.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202304013
Table 1
Retrieval errors of surface temperature for band 29-31-32 combination
隐含层 | 隐含节点 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
600 | 700 | 800 | 900 | |||||||||
M | SD | R | M | SD | R | M | SD | R | M | SD | R | |
7 | 1.51 | 1.41 | 0.912 | 1.32 | 1.25 | 0.985 | 1.26 | 1.84 | 0.95 | 1.36 | 1.23 | 0.961 |
8 | 1.42 | 1.32 | 0.925 | 1.22 | 1.21 | 0.985 | 1.24 | 1.81 | 0.951 | 1.61 | 1.56 | 0.960 |
9 | 1.33 | 1.25 | 0.932 | 1.13 | 1.17 | 0.988 | 1.21 | 1.32 | 0.963 | 1.37 | 1.36 | 0.962 |
10 | 1.27 | 2.04 | 0.912 | 1.23 | 2.48 | 0.910 | 2.46 | 3.11 | 0.879 | 2.34 | 3.77 | 0.896 |
Table 2
Retrieval errors of surface temperature for band 28-29-31-32 combination
隐含层 | 隐含节点 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
600 | 700 | 800 | 900 | |||||||||
M | SD | R | M | SD | R | M | SD | R | M | SD | R | |
7 | 0.76 | 0.68 | 0.987 | 0.89 | 1.13 | 0.984 | 0.77 | 0.71 | 0.988 | 0.66 | 0.68 | 0.987 |
8 | 0.97 | 2.25 | 0.956 | 0.82 | 0.84 | 0.986 | 0.53 | 0.58 | 0.991 | 0.71 | 0.72 | 0.985 |
9 | 0.79 | 0.78 | 0.986 | 0.82 | 0.79 | 0.986 | 0.45 | 0.53 | 0.998 | 0.78 | 0.73 | 0.981 |
10 | 0.83 | 0.89 | 0.986 | 0.71 | 0.78 | 0.987 | 1.03 | 2.63 | 0.928 | 1.14 | 1.56 | 0.963 |
Table 3
Retrieval errors of surface temperature for band 27-28-29-31-32 combination
隐含层 | 隐含节点 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
600 | 700 | 800 | 900 | |||||||||
M | SD | R | M | SD | R | M | SD | R | M | SD | R | |
7 | 0.64 | 0.68 | 0.993 | 0.58 | 0.59 | 0.995 | 0.61 | 0.69 | 0.995 | 0.76 | 0.88 | 0.979 |
8 | 0.61 | 0.67 | 0.995 | 0.62 | 0.93 | 0.993 | 0.66 | 0.85 | 0.978 | 0.48 | 0.54 | 0.998 |
9 | 0.62 | 0.68 | 0.994 | 0.65 | 1.02 | 0.991 | 0.73 | 0.97 | 0.965 | 0.44 | 0.52 | 0.999 |
10 | 0.65 | 0.88 | 0.978 | 0.64 | 1.12 | 0.99 | 0.48 | 0.61 | 0.998 | 0.56 | 0.89 | 0.997 |
Table 4
Retrieval errors of surface temperature for band 27-28-29-31-32-33 combination
隐含层 | 隐含节点 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
600 | 700 | 800 | 900 | |||||||||
M | SD | R | M | SD | R | M | SD | R | M | SD | R | |
7 | 0.68 | 0.69 | 0.991 | 0.65 | 0.67 | 0.991 | 0.65 | 0.68 | 0.996 | 0.63 | 1.21 | 0.957 |
8 | 0.62 | 0.65 | 0.992 | 0.63 | 0.88 | 0.992 | 0.65 | 0.70 | 0.995 | 0.51 | 0.55 | 0.997 |
9 | 0.64 | 0.66 | 0.991 | 0.68 | 0.68 | 0.995 | 0.69 | 0.79 | 0.992 | 0.54 | 0.56 | 0.996 |
10 | 0.93 | 1.65 | 0.912 | 0.69 | 0.72 | 0.994 | 0.51 | 0.55 | 0.998 | 0.77 | 1.51 | 0.935 |
Table 5
Retrieval emissivity errors in band 31 for band 27-28-29-31-32 combination
隐含层 | 隐含节点 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
600 | 700 | 800 | 900 | |||||||||
M | SD | R | M | SD | R | M | SD | R | M | SD | R | |
7 | 0.006 | 0.007 | 0.971 | 0.006 | 0.007 | 0.976 | 0.008 | 0.086 | 0.926 | 0.005 | 0.006 | 0.981 |
8 | 0.007 | 0.008 | 0.965 | 0.005 | 0.006 | 0.980 | 0.005 | 0.007 | 0.979 | 0.007 | 0.023 | 0.953 |
9 | 0.005 | 0.007 | 0.972 | 0.005 | 0.007 | 0.978 | 0.008 | 0.021 | 0.944 | 0.005 | 0.006 | 0.983 |
10 | 0.005 | 0.006 | 0.976 | 0.004 | 0.007 | 0.981 | 0.004 | 0.005 | 0.991 | 0.007 | 0.007 | 0.961 |
Table 6
Retrieval emissivity errors in band 32 for band 27-28-29-31-32 combination
隐含层 | 隐含节点 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
600 | 700 | 800 | 900 | |||||||||
M | SD | R | M | SD | R | M | SD | R | M | SD | R | |
7 | 0.005 | 0.006 | 0.972 | 0.005 | 0.006 | 0.977 | 0.005 | 0.007 | 0.976 | 0.006 | 0.008 | 0.962 |
8 | 0.005 | 0.006 | 0.975 | 0.004 | 0.005 | 0.986 | 0.004 | 0.005 | 0.986 | 0.004 | 0.004 | 0.992 |
9 | 0.004 | 0.005 | 0.979 | 0.005 | 0.013 | 0.961 | 0.008 | 0.014 | 0.948 | 0.005 | 0.005 | 0.981 |
10 | 0.004 | 0.006 | 0.978 | 0.004 | 0.006 | 0.977 | 0.007 | 0.006 | 0.956 | 0.005 | 0.006 | 0.977 |
Table 7
Retrieval errors of near-surface air temperature for band 27-28-29-31-32 combination
隐含层 | 隐含节点 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
600 | 700 | 800 | 900 | |||||||||
M | SD | R | M | SD | R | M | SD | R | M | SD | R | |
7 | 1.64 | 1.55 | 0.958 | 1.52 | 1.55 | 0.962 | 1.58 | 1.66 | 0.963 | 1.68 | 1.78 | 0.966 |
8 | 1.58 | 1.64 | 0.953 | 1.56 | 1.58 | 0.958 | 1.56 | 1.65 | 0.964 | 1.60 | 1.72 | 0.958 |
9 | 1.44 | 1.51 | 0.959 | 1.49 | 1.54 | 0.965 | 1.56 | 1.63 | 0.968 | 1.69 | 1.77 | 0.959 |
10 | 1.47 | 1.49 | 0.961 | 1.42 | 1.46 | 0.975 | 1.46 | 1.52 | 0.967 | 1.64 | 1.69 | 0.969 |
Table 8
Retrieval errors of near-surface air temperature for band 27-28-29-31-32+LST+LSE31+LSE32 combination
隐含层 | 隐含节点 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
600 | 700 | 800 | 900 | |||||||||
M | SD | R | M | SD | R | M | SD | R | M | SD | R | |
7 | 1.14 | 1.36 | 0.976 | 1.19 | 1.37 | 0.975 | 1.14 | 1.38 | 0.981 | 1.16 | 1.36 | 0.978 |
8 | 1.25 | 1.34 | 0.968 | 1.18 | 1.38 | 0.975 | 1.19 | 1.41 | 0.978 | 1.03 | 1.16 | 0.979 |
9 | 1.22 | 1.32 | 0.971 | 1.26 | 1.41 | 0.964 | 0.93 | 1.05 | 0.980 | 1.19 | 1.37 | 0.975 |
10 | 1.19 | 1.29 | 0.976 | 1.14 | 1.36 | 0.977 | 0.81 | 0.91 | 0.984 | 1.22 | 1.34 | 0.973 |
Table 9
Retrieval errors of atmospheric water vapor content for band 27-28-29-31-32 combination
隐含层 | 隐含节点 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
600 | 700 | 800 | 900 | |||||||||
M | SD | R | M | SD | R | M | SD | R | M | SD | R | |
7 | 0.18 | 0.19 | 0.960 | 0.15 | 0.19 | 0.971 | 0.18 | 0.21 | 0.977 | 0.15 | 0.17 | 0.979 |
8 | 0.12 | 0.15 | 0.975 | 0.23 | 0.27 | 0.972 | 0.11 | 0.13 | 0.979 | 0.13 | 0.15 | 0.980 |
9 | 0.17 | 0.22 | 0.963 | 0.18 | 0.23 | 0.973 | 0.09 | 0.11 | 0.989 | 0.14 | 0.16 | 0.976 |
10 | 0.87 | 0.93 | 0.875 | 0.35 | 0.41 | 0.938 | 0.13 | 0.15 | 0.983 | 0.40 | 0.55 | 0.923 |
Table 10
Retrieval errors of atmospheric water vapor content for band 27-28-29-31-32+LST+LSE combination
隐含层 | 隐含节点 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
600 | 700 | 800 | 900 | |||||||||
M | SD | R | M | SD | R | M | SD | R | M | SD | R | |
7 | 0.15 | 0.17 | 0.976 | 0.18 | 0.21 | 0.971 | 0.17 | 0.18 | 0.975 | 0.14 | 0.16 | 0.976 |
8 | 0.15 | 0.16 | 0.976 | 0.21 | 0.23 | 0.969 | 0.09 | 0.11 | 0.991 | 0.15 | 0.17 | 0.977 |
9 | 0.14 | 0.16 | 0.977 | 0.23 | 0.25 | 0.967 | 0.11 | 0.15 | 0.979 | 0.08 | 0.09 | 0.992 |
10 | 0.17 | 0.19 | 0.975 | 0.15 | 0.19 | 0.971 | 0.09 | 0.11 | 0.990 | 0.11 | 0.12 | 0.989 |
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
毛克彪, 杨军, 韩秀珍, 等. 基于深度动态学习神经网络和辐射传输模型地表温度反演算法研究[J]. 中国农业信息, 2018, 30(5): 47-57.
|
|
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
毛克彪, 唐华俊, 李丽英, 等. 一个从MODIS数据同时反演地表温度和发射率的神经网络算法[J]. 遥感信息, 2007, 22(4): 9-15, 8.
|
|
|
21 |
毛克彪, 唐华俊, 陈仲新, 等. 一个用神经网络优化的针对ASTER数据反演地表温度和发射率的多波段算法[J]. 国土资源遥感, 2007, 19(3): 18-22.
|
|
|
22 |
|
23 |
|
24 |
付秀丽, 黎玲萍, 毛克彪, 等. 基于卷积神经网络模型的遥感图像分类[J]. 高技术通讯, 2017, 27(3): 203-212.
|
|
[1] | LUO Youlu, PAN Yonghao, XIA Shunxing, TAO Youzhi. Lightweight Apple Leaf Disease Detection Algorithm Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(5): 128-138. |
[2] | LIU Yi, ZHANG Yanjun. ReluformerN: Lightweight High-Low Frequency Enhanced for Hyperspectral Agricultural Lancover Classification [J]. Smart Agriculture, 2024, 6(5): 74-87. |
[3] | NIAN Yue, ZHAO Kaixuan, JI Jiangtao. Cow Hoof Slippage Detecting Method Based on Enhanced DeepLabCut Model [J]. Smart Agriculture, 2024, 6(5): 153-163. |
[4] | ZHANG Yanqi, ZHOU Shuo, ZHANG Ning, CHAI Xiujuan, SUN Tan. A Regional Farming Pig Counting System Based on Improved Instance Segmentation Algorithm [J]. Smart Agriculture, 2024, 6(4): 53-63. |
[5] | WENG Zhi, FAN Qi, ZHENG Zhiqiang. Automatic Measurement Method of Beef Cattle Body Size Based on Multimodal Image Information and Improved Instance Segmentation Network [J]. Smart Agriculture, 2024, 6(4): 64-75. |
[6] | ZHANG Fan, ZHOU Mengting, XIONG Benhai, YANG Zhengang, LIU Minze, FENG Wenxiao, TANG Xiangfang. Research Advances and Prospect of Intelligent Monitoring Systems for the Physiological Indicators of Beef Cattle [J]. Smart Agriculture, 2024, 6(4): 1-17. |
[7] | HOU Yiting, RAO Yuan, SONG He, NIE Zhenjun, WANG Tan, HE Haoxu. A Rapid Detection Method for Wheat Seedling Leaf Number in Complex Field Scenarios Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(4): 128-137. |
[8] | LI Hao, DU Yuqiu, XIAO Xingzhu, CHEN Yanxi. Remote Sensing Identification Method of Cultivated Land at Hill County of Sichuan Basin Based on Deep Learning [J]. Smart Agriculture, 2024, 6(3): 34-45. |
[9] | NIE Ganggang, RAO Honghui, LI Zefeng, LIU Muhua. Severity Grading Model for Camellia Oleifera Anthracnose Infection Based on Improved YOLACT [J]. Smart Agriculture, 2024, 6(3): 138-147. |
[10] | ZHANG Jing, ZHAO Zexuan, ZHAO Yanru, BU Hongchao, WU Xingyu. Oilseed Rape Sclerotinia in Hyperspectral Images Segmentation Method Based on Bi-GRU and Spatial-Spectral Information Fusion [J]. Smart Agriculture, 2024, 6(2): 40-48. |
[11] | PANG Chunhui, CHEN Peng, XIA Yi, ZHANG Jun, WANG Bing, ZOU Yan, CHEN Tianjiao, KANG Chenrui, LIANG Dong. HI-FPN: A Hierarchical Interactive Feature Pyramid Network for Accurate Wheat Lodging Localization Across Multiple Growth Periods [J]. Smart Agriculture, 2024, 6(2): 128-139. |
[12] | ZHANG Yuyu, BING Shuying, JI Yuanhao, YAN Beibei, XU Jinpu. Grading Method of Fresh Cut Rose Flowers Based on Improved YOLOv8s [J]. Smart Agriculture, 2024, 6(2): 118-127. |
[13] | ZHANG Jianhua, YAO Qiong, ZHOU Guomin, WU Wendi, XIU Xiaojie, WANG Jian. Intelligent Identification of Crop Agronomic Traits and Morphological Structure Phenotypes: A Review [J]. Smart Agriculture, 2024, 6(2): 14-27. |
[14] | GUO Wang, YANG Yusen, WU Huarui, ZHU Huaji, MIAO Yisheng, GU Jingqiu. Big Models in Agriculture: Key Technologies, Application and Future Directions [J]. Smart Agriculture, 2024, 6(2): 1-13. |
[15] | WANG Herong, CHEN Yingyi, CHAI Yingqian, XU Ling, YU Huihui. Image Segmentation Method Combined with VoVNetv2 and Shuffle Attention Mechanism for Fish Feeding in Aquaculture [J]. Smart Agriculture, 2023, 5(4): 137-149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||