Smart Agriculture ›› 2024, Vol. 6 ›› Issue (2): 118-127.doi: 10.12133/j.smartag.SA202401005
• Special Issue--Agricultural Information Perception and Models • Previous Articles Next Articles
ZHANG Yuyu, BING Shuying, JI Yuanhao, YAN Beibei, XU Jinpu()
Received:
2024-01-07
Online:
2024-03-30
Foundation items:
Shandong Province Natural Science Foundation General Project(ZR2022MC152); Shandong Province Major Science and Technology Innovation Project(2021LZGC014-3); Qingdao City Industrial Cultivation Plan Science and Technology Benefit People Special Project(23-1-3-6-zyyd-nsh)
About author:
ZHANG Yuyu, E-mail: 279715023@qq.com
corresponding author:
ZHANG Yuyu, BING Shuying, JI Yuanhao, YAN Beibei, XU Jinpu. Grading Method of Fresh Cut Rose Flowers Based on Improved YOLOv8s[J]. Smart Agriculture, 2024, 6(2): 118-127.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202401005
Table 1
Rose grading standards GBT—18247.1-2000
等级 | 分级标准 |
---|---|
A | 花头大,花色花型正常;无弯头,开放度基本一致, |
B | 花头大,花色花型正常,有轻微损伤;无弯头,开放度大部分一致, |
C | 花色、花型有偏差,可能有双心花,花头、花径、叶有轻微损伤;轻微病虫害、弯头、缺陷,开放度大部分一致;部分茎秆弯曲,粗细不均匀,叶面有轻微药斑、病斑 |
D | 花色、花型有畸形或擦痕,花头、花径、叶片有损伤;大部分为侧枝切花,有病虫害、弯头、缺陷,开放度一般;茎秆多数细短弯曲,叶面有药斑病斑 |
Table5
Comparison of overall performances of different models for detecting fresh cut rose flowers
模型名称 | 准确率/% | 召回率/% | mAP@0.5/% | mAP@0.5∶0.95/% | F 1值/% | 参数量/106 | 推理时间/ms | 模型大小/MB |
---|---|---|---|---|---|---|---|---|
Fast-RCNN | 86.8 | 81.4 | 80.5 | 76.1 | 0.55 | 193.9 | 36.5 | 102.35 |
Faster-RCNN | 93.3 | 87.2 | 63.7 | 58.9 | 0.49 | 254.6 | 48.8 | 142.08 |
SSD | 95.8 | 80.6 | 76.3 | 68.8 | 0.66 | 106.4 | 25.3 | 97.42 |
YOLOv3 | 93.6 | 76.9 | 81.4 | 71.8 | 0.74 | 207.8 | 22.6 | 103.67 |
YOLOv5s | 86.1 | 74.4 | 81.2 | 71.0 | 0.75 | 22.2 | 5.9 | 10.92 |
YOLOv8s | 95.3 | 96.5 | 82.4 | 72.2 | 0.75 | 22.5 | 15.6 | 11.13 |
Flower-YOLOv8s | 97.4 | 95.4 | 83.1 | 72.5 | 0.77 | 18.0 | 5.7 | 8.87 |
1 |
中国报告大厅. 2022年玫瑰行业分析[EB/OL]. [2023-12-02].
|
2 |
光明网. 年产量达180亿枝:探索云南鲜切花产业背后的科技力量[EB/OL]. (2023-08-22).
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
赵晓龙. 基于神经网络的玫瑰花图像等级分类识别研究[D]. 昆明: 云南大学, 2021.
|
|
|
8 |
孙鑫岩. 基于深度学习的鲜切花分级算法[D]. 南京: 南京林业大学, 2022.
|
|
|
9 |
吴宇. 基于深度学习的玫瑰鲜切花分级研究[D]. 昆明: 云南大学, 2021.
|
|
|
10 |
|
11 |
国家质量技术监督局. 主要花卉产品等级 第1部分:鲜切花: GB/T 18247.1—2000 [S]. 北京: 中国标准出版社, 2001.
|
State Bureau of Quality and Technical Supervision of the People's Republic of China. Product grade for major ornamental plants-Part 1: Cut flowers: GB/T 18247.1—2000 [S]. Beijing: Standards Press of China, 2001.
|
|
12 |
|
13 |
WOO S,
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
高芳芳, 武振超, 索睿, 等. 基于深度学习与目标跟踪的苹果检测与视频计数方法[J]. 农业工程学报, 2021, 37(21): 217-224.
|
|
|
23 |
施行. 基于视觉技术的红提串品质无损检测与分级[D]. 武汉: 华中农业大学, 2021.
|
|
|
24 |
王俊杰. 基于深度学习的红枣缺陷检测分级技术研究[D]. 西安: 陕西科技大学, 2020.
|
|
|
25 |
|
[1] | LI Zusheng, TANG Jishen, KUANG Yingchun. A Lightweight Model for Detecting Small Targets of Litchi Pests Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(2): 146-159. |
[2] | MA Liu, MAO Kebiao, GUO Zhonghua. Defogging Remote Sensing Images Method Based on a Hybrid Attention-Based Generative Adversarial Network [J]. Smart Agriculture, 2025, 7(2): 172-182. |
[3] | NIU Ziang, QIU Zhengjun. Extraction Method of Maize Plant Skeleton and Phenotypic Parameters Based on Improved YOLOv11-Pose [J]. Smart Agriculture, 2025, 7(2): 95-105. |
[4] | WU Liuai, XU Xueke. Lightweight Tomato Leaf Disease and Pest Detection Method Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(1): 146-155. |
[5] | QUAN Jialu, CHEN Wenbai, WANG Yiqun, CHENG Jiajing, LIU Yilong. Research on Agricultural Drought Prediction Based on GCN-BiGRU-STMHSA [J]. Smart Agriculture, 2025, 7(1): 156-164. |
[6] | XU Shiwei, LI Qianchuan, LUAN Rupeng, ZHUANG Jiayu, LIU Jiajia, XIONG Lu. Agricultural Market Monitoring and Early Warning: An Integrated Forecasting Approach Based on Deep Learning [J]. Smart Agriculture, 2025, 7(1): 57-69. |
[7] | GONG Yu, WANG Ling, ZHAO Rongqiang, YOU Haibo, ZHOU Mo, LIU Jie. Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data [J]. Smart Agriculture, 2025, 7(1): 97-110. |
[8] | QI Zijun, NIU Dangdang, WU Huarui, ZHANG Lilin, WANG Lunfeng, ZHANG Hongming. Chinese Kiwifruit Text Named Entity Recognition Method Based on Dual-Dimensional Information and Pruning [J]. Smart Agriculture, 2025, 7(1): 44-56. |
[9] | ZHANG Hui, HU Jun, SHI Hang, LIU Changxi, WU Miao. Precision Target Spraying System Integrated with Remote Deep Learning Recognition Model for Cabbage Plant Centers [J]. Smart Agriculture, 2024, 6(6): 85-95. |
[10] | LU Bibo, LIANG Di, YANG Jie, SONG Aiqing, HUANGFU Shangwei. Image Segmentation Method of Chinese Yam Leaves in Complex Background Based on Improved ENet [J]. Smart Agriculture, 2024, 6(6): 109-120. |
[11] | CHEN Junlin, ZHAO Peng, CAO Xianlin, NING Jifeng, YANG Shuqin. Lightweight YOLOv8s-Based Strawberry Plug Seedling Grading Detection and Localization via Channel Pruning [J]. Smart Agriculture, 2024, 6(6): 132-143. |
[12] | HU Chengxi, TAN Lixin, WANG Wenyin, SONG Min. Lightweight Tea Shoot Picking Point Recognition Model Based on Improved DeepLabV3+ [J]. Smart Agriculture, 2024, 6(5): 119-127. |
[13] | LUO Youlu, PAN Yonghao, XIA Shunxing, TAO Youzhi. Lightweight Apple Leaf Disease Detection Algorithm Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(5): 128-138. |
[14] | LIU Yi, ZHANG Yanjun. ReluformerN: Lightweight High-Low Frequency Enhanced for Hyperspectral Agricultural Lancover Classification [J]. Smart Agriculture, 2024, 6(5): 74-87. |
[15] | NIAN Yue, ZHAO Kaixuan, JI Jiangtao. Cow Hoof Slippage Detecting Method Based on Enhanced DeepLabCut Model [J]. Smart Agriculture, 2024, 6(5): 153-163. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||