XIE Jiyuan1,2(), ZHANG Dongyan1,2(
), NIU Zhen1,2, CHENG Tao1,2, YUAN Feng3, LIU Yaling3
Received:
2024-10-16
Online:
2025-01-24
Foundation items:
About author:
XIE Jiyuan, E-mail: JiyuanXie01@163.com
corresponding author:
CLC Number:
XIE Jiyuan, ZHANG Dongyan, NIU Zhen, CHENG Tao, YUAN Feng, LIU Yaling. Accurate Detection of Tree Planting Locations in Inner Mongolia for The Three North Project Based on YOLOv10-MHSA[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202410010.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202410010
Table 1
Experimental results of YOLOv10 model for tree planting locations recognition
模型名称 | 网络深度 | 网络宽度 | AP@0.5 | AP@0.5:0.95 | P/% | R/% | 参数量/M |
---|---|---|---|---|---|---|---|
YOLOv10n | 0.33 | 0.25 | 0.921 | 0.761 | 0.923 | 0.876 | 5.3 |
YOLOv10s | 0.33 | 0.50 | 0.933 | 0.796 | 0.938 | 0.881 | 11.2 |
YOLOv10m | 0.67 | 0.75 | 0.939 | 0.846 | 0.947 | 0.886 | 31.3 |
YOLOv10b | 1.00 | 1.00 | 0.951 | 0.854 | 0.956 | 0.894 | 56.8 |
Table 4
Tree planting locations identification ablation experiments
模型名称 | AP@0.5 | AP@0.5:0.95 | P | R | FPS/(f/s) |
---|---|---|---|---|---|
YOLOv10n | 0.921 | 0.761 | 0.923 | 0.876 | 134 |
+小目标检测层 | 0.941 | 0.768 | 0.932 | 0.882 | 119 |
+ AKConv | 0.946 | 0.784 | 0.937 | 0.897 | 124 |
+MHSA | 0.934 | 0.774 | 0.938 | 0.886 | 130 |
+ Focal-EIOU Loss | 0.931 | 0.776 | 0.938 | 0.885 | 128 |
YOLOv10-MHSA | 0.982 | 0.837 | 0.961 | 0.921 | 109 |
Table 5
Comparison of the results of different models for detecting tree planting locations
模型名称 | 评价指标 | ||||
---|---|---|---|---|---|
AP@0.5 | AP@0.5:0.95 | P | R | FPS/(f/s) | |
YOLOv5s | 0.897 | 0.698 | 0.841 | 0.812 | 138 |
YOLOv8n | 0.915 | 0.734 | 0.867 | 0.795 | 121 |
YOLOv10n | 0.921 | 0.761 | 0.923 | 0.876 | 134 |
SSD | 0.784 | 0.624 | 0.792 | 0.743 | 67 |
Faster-R-CNN | 0.837 | 0.703 | 0.823 | 0.802 | 58 |
YOLOv10-MHSA | 0.982 | 0.837 | 0.961 | 0.921 | 109 |
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
李妹燕, 李芬, 徐景秀. 基于机器学习方法的高光谱遥感图像目标检测研究[J]. 激光杂志, 2024, 45(10): 108-113.
|
|
|
8 |
林晓林, 孙俊. 基于机器学习的小目标检测与追踪的算法研究[J]. 计算机应用研究, 2018, 35(11): 3450-3453, 3457.
|
|
|
9 |
叶昕怡, 高思莉, 李范鸣. 基于自适应对比度增强的红外小目标检测网络(英文)[J]. 红外与毫米波学报, 2023, 42(5): 701-710.
|
|
|
10 |
彭小丹, 陈锋军, 朱学岩, 等. 基于无人机图像和改进LSC-CNN模型的密集苗木检测和计数方法[J]. 智慧农业(中英文), 2024, 6(5): 88-97.
|
|
|
11 |
林两魁, 王少游, 唐忠兴. 基于深度卷积神经网络的红外过采样扫描图像点目标检测方法[J]. 红外与毫米波学报, 2018, 37(2): 219-226.
|
|
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||