Smart Agriculture ›› 2025, Vol. 7 ›› Issue (3): 108-119.doi: 10.12133/j.smartag.SA202410010
• Information Processing and Decision Making • Previous Articles Next Articles
XIE Jiyuan1,2, ZHANG Dongyan1,2(), NIU Zhen1,2, CHENG Tao1,2, YUAN Feng3, LIU Yaling3
Received:
2024-10-16
Online:
2025-05-30
Foundation items:
Science and Technology Program of Inner Mongolia Autonomous Region(2023JBGS000804); Hohhot Science and Technology Innovation Field Talent Program(2023RC-High Level-7); Hohhot Basic Research and Applied Basic Research Program(2024-Gauge-Base-34)
About author:
XIE Jiyuan, E-mail: JiyuanXie01@163.com
corresponding author:
CLC Number:
XIE Jiyuan, ZHANG Dongyan, NIU Zhen, CHENG Tao, YUAN Feng, LIU Yaling. Accurate Detection of Tree Planting Locations in Inner Mongolia for The Three North Project Based on YOLOv10-MHSA[J]. Smart Agriculture, 2025, 7(3): 108-119.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202410010
Table 1
Dectection results of tree planting locations based on YOLOv10 models
模型名称 | 网络深度 | 网络宽度 | AP@0.5 | AP@0.5:0.95 | P/% | R/% | 参数量/M |
---|---|---|---|---|---|---|---|
YOLOv10n | 0.33 | 0.25 | 0.921 | 0.761 | 0.923 | 0.876 | 5.3 |
YOLOv10s | 0.33 | 0.50 | 0.933 | 0.796 | 0.938 | 0.881 | 11.2 |
YOLOv10m | 0.67 | 0.75 | 0.939 | 0.846 | 0.947 | 0.886 | 31.3 |
YOLOv10b | 1.00 | 1.00 | 0.951 | 0.854 | 0.956 | 0.894 | 56.8 |
Table 4
Ablation experiments for tree planting locations detection
模型名称 | AP@0.5 | AP@0.5:0.95 | P | R | FPS/(f/s) |
---|---|---|---|---|---|
YOLOv10n | 0.921 | 0.761 | 0.923 | 0.876 | 134 |
+小目标检测层 | 0.941 | 0.768 | 0.932 | 0.882 | 119 |
+ AKConv | 0.946 | 0.784 | 0.937 | 0.897 | 124 |
+MHSA | 0.934 | 0.774 | 0.938 | 0.886 | 130 |
+ Focal-EIOU Loss | 0.931 | 0.776 | 0.938 | 0.885 | 128 |
YOLOv10-MHSA | 0.982 | 0.837 | 0.961 | 0.921 | 109 |
Table 5
Comparison of different models for detecting tree planting locations
模型名称 | 评价指标 | ||||
---|---|---|---|---|---|
AP@0.5 | AP@0.5:0.95 | P | R | FPS/(f/s) | |
YOLOv5s | 0.897 | 0.698 | 0.841 | 0.812 | 138 |
YOLOv8n | 0.915 | 0.734 | 0.867 | 0.795 | 121 |
YOLOv10n | 0.921 | 0.761 | 0.923 | 0.876 | 134 |
SSD | 0.784 | 0.624 | 0.792 | 0.743 | 67 |
Faster-R-CNN | 0.837 | 0.703 | 0.823 | 0.802 | 58 |
YOLOv10-MHSA | 0.982 | 0.837 | 0.961 | 0.921 | 109 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
李妹燕, 李芬, 徐景秀. 基于机器学习方法的高光谱遥感图像目标检测研究[J]. 激光杂志, 2024, 45(10): 108-113.
|
|
|
[8] |
林晓林, 孙俊. 基于机器学习的小目标检测与追踪的算法研究[J]. 计算机应用研究, 2018, 35(11): 3450-3453, 3457.
|
|
|
[9] |
叶昕怡, 高思莉, 李范鸣. 基于自适应对比度增强的红外小目标检测网络(英文)[J]. 红外与毫米波学报, 2023, 42(5): 701-710.
|
|
|
[10] |
彭小丹, 陈锋军, 朱学岩, 等. 基于无人机图像和改进LSC-CNN模型的密集苗木检测和计数方法[J]. 智慧农业(中英文), 2024, 6(5): 88-97.
|
|
|
[11] |
林两魁, 王少游, 唐忠兴. 基于深度卷积神经网络的红外过采样扫描图像点目标检测方法[J]. 红外与毫米波学报, 2018, 37(2): 219-226.
|
|
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[1] | CHANG Jian, WANG Bingbing, YIN Long, LI Yanqing, LI Zhaoxin, LI Zhuang. The Lightweight Bee Pollination Recognition Model Based On YOLOv10n-CHL [J]. Smart Agriculture, 2025, 7(3): 185-198. |
[2] | SI Chaoguo, LIU Mengchen, WU Huarui, MIAO Yisheng, ZHAO Chunjiang. Chilli-YOLO: An Intelligent Maturity Detection Algorithm for Field-Grown Chilli Based on Improved YOLOv10 [J]. Smart Agriculture, 2025, 7(2): 160-171. |
[3] | LI Zusheng, TANG Jishen, KUANG Yingchun. A Lightweight Model for Detecting Small Targets of Litchi Pests Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(2): 146-159. |
[4] | WU Liuai, XU Xueke. Lightweight Tomato Leaf Disease and Pest Detection Method Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(1): 146-155. |
[5] | JIN Xuemeng, LIANG Xiyin, DENG Pengfei. Lightweight Daylily Grading and Detection Model Based on Improved YOLOv10 [J]. Smart Agriculture, 2024, 6(5): 108-118. |
[6] | LAI Jiazheng, LI Beibei, CHENG Xiang, SUN Feng, CHENG Juting, WANG Jing, ZHANG Qian, YE Xiefeng. Monitoring of Leaf Chlorophyll Content in Flue-Cured Tobacco Based on Hyperspectral Remote Sensing of Unmanned Aerial Vehicle [J]. Smart Agriculture, 2023, 5(2): 68-81. |
[7] | LI Yangfan, HE Xiongkui, HAN Leng, HUANG Zhan, HE Miao. Comparison of Droplet Deposition Performance Between Caterpillar Mist Sprayer and Six-Rotor Unmanned Aerial Vehicle in Mango Canopy [J]. Smart Agriculture, 2022, 4(3): 53-62. |
[8] | YANG Guofeng, HE Yong, FENG Xuping, LI Xiyao, ZHANG Jinnuo, YU Zeyu. Methods and New Research Progress of Remote Sensing Monitoring of Crop Disease and Pest Stress Using Unmanned Aerial Vehicle [J]. Smart Agriculture, 2022, 4(1): 1-16. |
[9] | WANG Guobin, HAN Xin, SONG Cancan, YI Lili, LU Wenxia, LAN Yubin. Evaluation of Droplet Size and Drift Distribution of Herbicide Sprayed by Plant Protection Unmanned Aerial Vehicle in Winter Wheat Field [J]. Smart Agriculture, 2021, 3(3): 38-51. |
[10] | ZHANG Jian, XIE Tianjin, YANG Wanneng, ZHOU Guangsheng. Research Status and Prospect on Height Estimation of Field Crop Using Near-Field Remote Sensing Technology [J]. Smart Agriculture, 2021, 3(1): 1-15. |
[11] | HUANG Kai, SHU Lei, LI Kailiang, YANG Xing, ZHU Yan, WANG Xiaochan, SU Qin. Design and Prospect for Anti-theft and Anti-destruction of Nodes in Solar Insecticidal Lamps Internet of Things [J]. Smart Agriculture, 2021, 3(1): 129-143. |
[12] | WANG Changling, HE Xiongkui, BONDS Jane, QI Peng, YANG Yi, GAO Wanlin. Effect of Downwash Airflow Field of 8-rotor Unmanned Aerial Vehicle on Spray Deposition Distribution Characteristics under Different Flight Parameters [J]. Smart Agriculture, 2020, 2(4): 124-136. |
[13] | Wan Liang, Cen Haiyan, Zhu Jiangpeng, Zhang Jiafei, Du Xiaoyue, He Yong. Using fusion of texture features and vegetation indices from water concentration in rice crop to UAV remote sensing monitor [J]. Smart Agriculture, 2020, 2(1): 58-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||