1 |
习近平. 发展新质生产力是推动高质量发展的内在要求和重要着力点[J]. 求知, 2024, 6: 4-6.
|
|
XI J P. Developing new productive forces is an intrinsic requirement and an important focus of promoting high-quality development[J]. Seeking knowledge, 2024, 6: 4-6.
|
2 |
赵春江. 智慧农业的发展现状与未来展望[J]. 华南农业大学学报, 2021, 42(6): 1-7.
|
|
ZHAO C J. Current situations and prospects of smart agriculture[J]. Journal of South China agricultural university, 2021, 42(6): 1-7.
|
3 |
JIANG Q, LI W Y, FAN Z D, et al. Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland[J]. Journal of hydrology, 2021, 595: ID 125660.
|
4 |
王彩霞, 黄安宁, 郑鹏, 等. 中国第一代全球陆面再分析(CRA40/Land)气温和降水产品在中国大陆的适用性评估[J]. 高原气象, 2022, 41(5): 1325-1334.
|
|
WANG C X, HUANG A N, ZHENG P, et al. Applicability evaluation of China's first generation of global land surface reanalysis(CRA40/land) air temperature and precipitation products in China mainland[J]. Plateau meteorology, 2022, 41(5): 1325-1334.
|
5 |
宋长青, 温孚江, 李俊清, 等. 农业大数据研究应用进展与展望[J]. 农业与技术, 2018, 38(22): 153-156.
|
|
SONG C Q, WEN F J, LI J Q, et al. Progress and prospect of agricultural big data research and application[J]. Agriculture and technology, 2018, 38(22): 153-156.
|
6 |
AHMAD BHAT S, HUANG N F. Big data and AI revolution in precision agriculture: Survey and challenges[J]. IEEE access, 2021, 9: 110209-110222.
|
7 |
CRAVERO A, PARDO S, GALEAS P, et al. Data type and data sources for agricultural big data and machine learning[J]. Sustainability, 2022, 14(23): ID 16131.
|
8 |
DOSHI Z, NADKARNI S, AGRAWAL R, et al. AgroConsultant: Intelligent crop recommendation system using machine learning algorithms[C]// 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA). Piscataway, New Jersey, USA: IEEE, 2018.
|
9 |
DUTTA R, LI C, SMITH D, et al. Big data architecture for environmental analytics[M]// IFIP Advances in Information and Communication Technology. Cham: Springer International Publishing, 2015: 578-588.
|
10 |
AIKEN V C F, DÓREA J R R, ACEDO J S, et al. Record linkage for farm-level data analytics: Comparison of deterministic, stochastic and machine learning methods[J]. Computers and electronics in agriculture, 2019, 163: ID 104857.
|
11 |
VON LÜCKEN C, ACOSTA A, ROJAS N. Solving a many-objective crop rotation problem with evolutionary algorithms[M]// Smart Innovation, Systems and Technologies. Singapore: Springer Singapore, 2021: 59-69.
|
12 |
FENZ S, NEUBAUER T, FRIEDEL J K, et al. AI- and data-driven crop rotation planning[J]. Computers and electronics in agriculture, 2023, 212: ID 108160.
|
13 |
ZHANG D Y, DING Y, CHEN P F, et al. Automatic extraction of wheat lodging area based on transfer learning method and deeplabv3+ network[J]. Computers and electronics in agriculture, 2020, 179: ID 105845.
|
14 |
HAJIMIRZAJAN A, VAHDAT M, SADEGHEIH A, et al. An integrated strategic framework for large-scale crop planning: Sustainable climate-smart crop planning and agri-food supply chain management[J]. Sustainable production and consumption, 2021, 26: 709-732.
|
15 |
WU L, TIAN J F, LIU Y L, et al. Multi-objective crop planting structure optimisation based on game theory[J]. Water, 2022, 14(13): ID 2125.
|
16 |
WANG H B, CHANG W Q, YAO Y, et al. Cropformer: A new generalized deep learning classification approach for multi-scenario crop classification[J]. Frontiers in plant science, 2023, 14: ID 1130659.
|
17 |
SEYDI S T, AMANI M, GHORBANIAN A. A dual attention convolutional neural network for crop classification using time-series Sentinel-2 imagery[J]. Remote sensing, 2022, 14(3): ID 498.
|
18 |
吴刚, 彭要奇, 周广奇, 等. 基于多光谱成像和卷积神经网络的玉米作物营养状况识别方法研究[J]. 智慧农业(中英文), 2020, 2(1): 111-120.
|
|
WU G, PENG Y Q, ZHOU G Q, et al. Recognition method for corn nutrient based on multispectral image and convolutional neural network[J]. Smart agriculture, 2020, 2(1): 111-120.
|
19 |
ZHANG Y, HUI J, QIN Q M, et al. Transfer-learning-based approach for leaf chlorophyll content estimation of winter wheat from hyperspectral data[J]. Remote sensing of environment, 2021, 267: ID 112724.
|
20 |
YUE J B, YANG G J, LI C C, et al. Analyzing winter-wheat biochemical traits using hyperspectral remote sensing and deep learning[J]. Computers and electronics in agriculture, 2024, 222: ID 109026.
|
21 |
NEVAVUORI P, NARRA N, LIPPING T. Crop yield prediction with deep convolutional neural networks[J]. Computers and electronics in agriculture, 2019, 163: ID 104859.
|
22 |
REN Y T, LI Q Z, DU X, et al. Analysis of corn yield prediction potential at various growth phases using a process-based model and deep learning[J]. Plants, 2023, 12(3): ID 446.
|
23 |
ZHAO Y, HAN S Y, MENG Y, et al. Transfer-learning-based approach for yield prediction of winter wheat from planet data and SAFY model[J]. Remote sensing, 2022, 14(21): ID 5474.
|
24 |
ZHAO Y, HAN S Y, ZHENG J, et al. ChinaWheatYield30m: A 30 m annual winter wheat yield dataset from 2016 to 2021 in China[J]. Earth system science data, 2023, 15(9): 4047-4063.
|
25 |
SHAHI T B, XU C Y, NEUPANE A, et al. Recent advances in crop disease detection using UAV and deep learning techniques[J]. Remote sensing, 2023, 15(9): ID 2450.
|
26 |
AKBAR M, ULLAH M, SHAH B, et al. An effective deep learning approach for the classification of Bacteriosis in peach leave[J]. Frontiers in plant science, 2022, 13: ID 1064854.
|
27 |
LAMBA S, KUKREJA V, BALIYAN A, et al. A novel hybrid severity prediction model for blast paddy disease using machine learning[J]. Sustainability, 2023, 15(2): ID 1502.
|
28 |
AJILOGBA C F, WALKER S. Using crop modeling to find solutions for wheat diseases: A review[J]. Frontiers in environmental science, 2023, 10: ID 987765.
|
29 |
ARGENTO F, ANKEN T, ABT F, et al. Site-specific nitrogen management in winter wheat supported by low-altitude remote sensing and soil data[J]. Precision agriculture, 2021, 22(2): 364-386.
|
30 |
HEIß A, PARAFOROS D S, SHARIPOV G M, et al. Modeling and simulation of a multi-parametric fuzzy expert system for variable rate nitrogen application[J]. Computers and electronics in agriculture, 2021, 182: ID 106008.
|
31 |
GOBBO S, DE ANTONI MIGLIORATI M, FERRISE R, et al. Evaluation of different crop model-based approaches for variable rate nitrogen fertilization in winter wheat[J]. Precision agriculture, 2022, 23(6): 1922-1948.
|
32 |
FONTANET M, FERNÀNDEZ-GARCIA D, RODRIGO G, et al. Combined simulation and optimization framework for irrigation scheduling in agriculture fields[J]. Irrigation science, 2022, 40(1): 115-130.
|
33 |
CORBARI C, SALERNO R, CEPPI A, et al. Smart irrigation forecast using satellite LANDSAT data and meteo-hydrological modeling[J]. Agricultural water management, 2019, 212: 283-294.
|
34 |
STOREY G, MENG Q G, LI B H. Leaf disease segmentation and detection in apple orchards for precise smart spraying in sustainable agriculture[J]. Sustainability, 2022, 14(3): ID 1458.
|
35 |
AMARASINGAM N, HAMILTON M, KELLY J E, et al. Autonomous detection of mouse-ear hawkweed using drones, multispectral imagery and supervised machine learning[J]. Remote sensing, 2023, 15(6): ID 1633.
|
36 |
VASILEIOU M, KYRGIAKOS L S, KLEISIARI C, et al. Transforming weed management in sustainable agriculture with artificial intelligence: A systematic literature review towards weed identification and deep learning[J]. Crop protection, 2024, 176: ID 106522.
|
37 |
NØRREMARK M, NILSSON R S, SØRENSEN C A G. In-field route planning optimisation and performance indicators of grain harvest operations[J]. Agronomy, 2022, 12(5): ID 1151.
|
38 |
JING Y P, LUO C M, LIU G. Multiobjective path optimization for autonomous land levelling operations based on an improved MOEA/D-ACO[J]. Computers and electronics in agriculture, 2022, 197: ID 106995.
|
39 |
UTAMIMA A, REINERS T. Navigating route planning for multiple vehicles in multifield agriculture with a fast hybrid algorithm[J]. Computers and electronics in agriculture, 2023, 212: ID 108021.
|
40 |
李子康, 张璠, 滕桂法, 等. 基于深度强化学习的收割机省内协同调度优化策略[J]. 农业工程学报, 2024, 40(14): 23-32.
|
|
LI Z K, ZHANG F, TENG G F, et al. Deep reinforcement learning-based optimization strategy for the cooperative scheduling of harvesters[J]. Transactions of the Chinese society of agricultural engineering, 2024, 40(14): 23-32.
|
41 |
KIRAN KUMARA T M, KANDPAL A, PAL S. A meta-analysis of economic and environmental benefits of conservation agriculture in South Asia[J]. Journal of environmental management, 2020, 269: ID 110773.
|
42 |
SINGH S N, BISARIA J, SINHA B, et al. Developing a composite weighted indicator-based index for monitoring and evaluating climate-smart agriculture in India[J]. Mitigation and adaptation strategies for global change, 2024, 29(2): ID 12.
|
43 |
PartnersIPC Global. Integrated food security phase classification technical manual version 2.0[M]. Evidence and Standards for Better Food Security Decisions. Rome: FAO, 2012.
|
44 |
KRISHNAMURTHY R P K, FISHER J B, SCHIMEL D S, et al. Applying tipping point theory to remote sensing science to improve early warning drought signals for food security[J]. Earth's future, 2020, 8(3): ID e2019EF001456.
|
45 |
PYLIANIDIS C, OSINGA S, ATHANASIADIS I N. Introducing digital twins to agriculture[J]. Computers and electronics in agriculture, 2021, 184: ID 105942.
|
46 |
PELADARINOS N, PIROMALIS D, CHEIMARAS V, et al. Enhancing smart agriculture by implementing digital twins: A comprehensive review[J]. Sensors, 2023, 23(16): ID 7128.
|
47 |
刘羽飞, 何勇, 刘飞, 等. 农业传感器技术在我国的应用和市场: 现状与未来展望[J]. 浙江大学学报(农业与生命科学版), 2023, 49(3): 293-304.
|
|
LIU Y F, HE Y, LIU F, et al. Application and market of agricultural sensor technology in China: Current status and future perspectives[J]. Journal of Zhejiang university (agriculture and life sciences), 2023, 49(3): 293-304.
|