Smart Agriculture ›› 2025, Vol. 7 ›› Issue (1): 20-32.doi: 10.12133/j.smartag.SA202410025
• Topic--Intelligent Agricultural Knowledge Services and Smart Unmanned Farms (Part 2) • Previous Articles Next Articles
JIANG Jingchi1,2, YAN Lian1, LIU Jie1,2()
Received:
2024-10-20
Online:
2025-01-30
Foundation items:
About author:
JIANG Jingchi, E-mail: jiangjingchi@hit.edu.cn
corresponding author:
CLC Number:
JIANG Jingchi, YAN Lian, LIU Jie. Agricultural Large Language Model Based on Precise Knowledge Retrieval and Knowledge Collaborative Generation[J]. Smart Agriculture, 2025, 7(1): 20-32.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202410025
Table 3
Overall comparison of model-generated results
Backbone | Model | GOOGLE BLEU | BLEU | ROUGE | BertScore/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BLEU_1 | BLEU_2 | BLEU_3 | BLEU_4 | Mean_BLEU | ROUGE_1 | ROUGE_2 | ROUGE_3 | ||||
GPT-4o | Base | 0.196 9 | 0.075 2 | 0.044 4 | 0.031 9 | 0.024 4 | 0.044 0 | 0.139 8 | 0.000 0 | 0.139 8 | 53.39 |
Baichuan-7B | Base | 0.642 9 | 0.788 6 | 0.420 3 | 0.288 6 | 0.212 1 | 0.427 4 | 0.167 0 | 0.000 0 | 0.167 0 | 53.19 |
KGLLM(Ours) | 1.918 0 | 3.482 2 | 2.255 1 | 1.703 9 | 1.304 8 | 2.186 5 | 2.572 6 | 0.271 0 | 2.572 6 | 64.53 | |
Baichuan-13B | Base | 0.731 7 | 1.083 8 | 0.605 7 | 0.424 1 | 0.313 4 | 0.606 8 | 0.229 3 | 0.000 0 | 0.229 3 | 55.81 |
KGLLM(Ours) | 1.276 7 | 5.844 3 | 3.900 5 | 2.796 0 | 2.043 1 | 3.646 0 | 5.608 0 | 0.132 5 | 5.608 0 | 64.37 | |
ChatGLM3-6B | Base | 0.464 2 | 0.322 2 | 0.169 4 | 0.114 4 | 0.081 8 | 0.171 9 | 0.124 5 | 0.000 0 | 0.124 5 | 52.43 |
KGLLM(Ours) | 2.608 6 | 4.105 5 | 2.386 5 | 1.716 7 | 1.281 6 | 2.372 6 | 2.166 8 | 0.151 8 | 2.166 8 | 64.03 | |
Qwen1.5-7B | Base | 0.198 5 | 0.040 5 | 0.021 4 | 0.014 2 | 0.009 9 | 0.021 5 | 0.118 0 | 0.000 0 | 0.118 0 | 51.07 |
KGLLM(Ours) | 1.441 9 | 3.154 4 | 1.923 2 | 1.420 7 | 1.084 7 | 1.895 8 | 1.192 9 | 0.039 1 | 1.192 9 | 61.41 | |
Qwen1.5-14B | Base | 0.343 1 | 0.031 1 | 0.018 4 | 0.013 4 | 0.009 9 | 0.018 2 | 0.131 2 | 0.000 0 | 0.131 2 | 51.63 |
KGLLM(Ours) | 1.806 5 | 5.206 8 | 3.195 7 | 2.267 7 | 1.652 1 | 3.080 6 | 3.234 0 | 0.028 2 | 3.234 0 | 61.85 | |
Average | Base | 0.476 1 | 0.453 2 | 0.247 0 | 0.170 9 | 0.125 4 | 0.249 2 | 0.154 0 | 0.000 0 | 0.154 0 | 52.83 |
KGLLM(Ours) | 1.810 3 ⬆1.613 4 | 4.358 6 ⬆4.283 4 | 2.732 2 ⬆2.687 8 | 1.981 0 ⬆1.949 1 | 1.473 3 ⬆1.448 9 | 2.636 3 ⬆2.592 3 | 2.954 9 ⬆2.815 1 | 0.124 5 ⬆0.124 5 | 2.954 9 ⬆2.815 1 | 63.23 ⬆9.84 |
Table 4
Manually evaluated test question samples
问题 | 要求适宜天津地区夏播种植……三元复合肥0.150—0.225 t/hm2,拔节期重施一次氮肥。回答满足要求的玉米品种? |
---|---|
Base | 天津地区适宜夏播种植的玉米品种较多,我从生育期、产量、抗病性等方面进行了对比,为你推荐几个品种: ……我最推荐联创825…… |
GPT-4o | 根据天津地区的气候条件和夏播要求,适合该地区的玉米品种应具备以下特点: ……生育期短:由于是夏播,生育期较短的品种可……郑单958: 该品种生育期适中,适合夏播,具有较好的耐热性和抗病性,能够在高密度种植下稳定高产 |
KGLLM(Ours) | 宽诚15 |
问题 | 海科玉3适宜范围/适宜推广区域? |
Base | “海科玉3”是一款具体的产品,但没有足够的信息来确定它的确切类型或用途(可能是某种农业作物品种、化工产品等)。因此,我无法直接提供其适宜的推广区域。……如果你能提供更多关于“海科玉3”的信息,例如它是哪种产品,我可以给出更具体的答案。建议你查询相关资料或联系生产者以获取最准确的信息 |
GPT-4o | “海科玉3”是由……3具有以下适宜推广区域: 华北地区……黄淮海……西北部分地区…… |
KGLLM(Ours) | 适宜在东华北中早熟春玉米类型区的黑龙江省第二积温带,吉林省延边州、白山市的部分地区,通化市、吉林市的东部,内蒙古中东部的呼伦贝尔市扎兰屯市南部、兴安盟中北部、通辽市扎鲁特旗中部、赤峰市中北部、乌兰察布市前山、呼和浩特市北部、包头市北部早熟区种植 |
Table 5
Ablation results for knowledge filtering based on information entropy and explicit decoding constraints of knowledge graphs
Backbone | Model | GOOGLE BLEU | BLEU | ROUGE | BertScore/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BLEU_1 | BLEU_2 | BLEU_3 | BLEU_4 | Mean_BLEU | ROUGE_1 | ROUGE_2 | ROUGE_3 | ||||
Baichuan-7b | KGLLM(Ours) | 1.918 0 | 3.482 2 | 2.255 1 | 1.703 9 | 1.304 8 | 2.186 5 | 2.572 6 | 0.271 0 | 2.572 6 | 64.53 |
wo MutualI | 1.680 3 | 3.557 7 | 2.158 0 | 1.570 5 | 1.181 4 | 2.116 9 | 2.158 8 | 0.121 1 | 2.158 8 | 62.23 | |
wo EConstraint | 1.723 2 | 3.323 5 | 2.210 5 | 1.665 5 | 1.259 8 | 2.114 8 | 2.941 2 | 0.176 5 | 2.941 2 | 64.20 | |
Baichuan-13b | KGLLM(Ours) | 1.276 7 | 5.844 3 | 3.900 5 | 2.796 0 | 2.043 1 | 3.646 0 | 5.608 0 | 0.132 5 | 5.608 0 | 64.37 |
wo MutualI | 1.488 8 | 5.467 1 | 3.529 7 | 2.483 8 | 1.776 4 | 3.314 3 | 4.753 6 | 0.093 1 | 4.753 6 | 62.42 | |
wo EConstraint | 1.835 7 | 5.556 7 | 3.643 6 | 2.620 7 | 1.933 2 | 3.438 5 | 5.219 8 | 0.239 6 | 5.219 8 | 63.95 | |
ChatGLM3-6B | KGLLM(Ours) | 2.608 6 | 4.105 5 | 2.386 5 | 1.716 7 | 1.281 6 | 2.372 6 | 2.166 8 | 0.151 8 | 2.166 8 | 64.03 |
wo MutualI | 2.480 6 | 3.211 9 | 1.967 7 | 1.484 3 | 1.155 4 | 1.954 8 | 1.996 9 | 0.209 9 | 1.996 9 | 62.65 | |
wo EConstraint | 2.709 3 | 3.813 5 | 2.211 3 | 1.608 4 | 1.217 0 | 2.212 6 | 2.031 6 | 0.122 0 | 2.031 6 | 63.98 | |
Qwen1.5-7B | KGLLM(Ours) | 1.441 9 | 3.154 4 | 1.923 2 | 1.420 7 | 1.084 7 | 1.895 8 | 1.192 9 | 0.039 1 | 1.192 9 | 61.41 |
wo MutualI | 1.294 6 | 2.869 4 | 1.638 0 | 1.164 8 | 0.863 8 | 1.634 0 | 1.053 3 | 0.022 0 | 1.053 3 | 60.06 | |
wo EConstraint | 1.157 5 | 2.665 4 | 1.616 2 | 1.180 0 | 0.888 7 | 1.587 6 | 1.383 8 | 0.060 2 | 1.383 8 | 60.20 | |
Qwen1.5-14B | KGLLM(Ours) | 1.806 5 | 5.206 8 | 3.195 7 | 2.267 7 | 1.652 1 | 3.080 6 | 3.234 0 | 0.028 2 | 3.234 0 | 61.85 |
wo MutualI | 1.700 9 | 4.782 2 | 2.845 6 | 2.010 9 | 1.473 4 | 2.778 0 | 2.630 2 | 0.017 0 | 2.630 2 | 61.11 | |
wo EConstraint | 1.461 7 | 4.807 3 | 3.016 7 | 2.196 3 | 1.635 1 | 2.913 8 | 2.562 3 | 0.051 0 | 2.562 3 | 61.51 | |
Average | KGLLM(Ours) | 1.810 3 | 4.358 6 | 2.732 2 | 1.981 0 | 1.473 3 | 2.636 3 | 2.954 9 | 0.124 5 | 2.954 9 | 63.24 |
wo MutualI | 1.729 0 ⬇0.081 3 | 3.977 7 ⬇0.381 0 | 2.427 8 ⬇0.304 4 | 1.742 9 ⬇0.238 1 | 1.290 1 ⬇0.183 2 | 2.359 6 ⬇0.276 7 | 2.518 6 ⬇0.436 4 | 0.092 6 ⬇0.031 9 | 2.518 6 ⬇0.436 3 | 61.69 ⬇1.54 | |
wo EConstraint | 1.777 5 ⬇0.032 9 | 4.033 3 ⬇0.325 4 | 2.539 7 ⬇0.192 5 | 1.854 2 ⬇0.126 8 | 1.386 8 ⬇0.086 5 | 2.453 5 ⬇0.182 8 | 2.827 7 ⬇0.127 1 | 0.129 8 ⬇-0.005 3 | 2.827 7 ⬇0.127 1 | 62.77 ⬇0.47 |
Table 6
Comparison of different knowledge selection and filtering methods in evidence retrieval
Backbone | Model | GOOGLE BLEU | BLEU | ROUGE | BertScore/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BLEU_1 | BLEU_2 | BLEU_3 | BLEU_4 | Mean_BLEU | ROUGE_1 | ROUGE_2 | ROUGE_3 | ||||
Baichuan-7b | KGLLM(Ours) | 1.918 0 | 3.482 2 | 2.255 1 | 1.703 9 | 1.304 8 | 2.186 5 | 2.572 6 | 0.271 0 | 2.572 6 | 64.53 |
Semantic only | 1.680 3 | 3.557 7 | 2.158 0 | 1.570 5 | 1.181 4 | 2.116 9 | 2.158 8 | 0.121 1 | 2.158 8 | 62.23 | |
Random | 1.481 3 | 3.331 1 | 1.994 3 | 1.458 4 | 1.107 9 | 1.972 9 | 1.885 9 | 0.105 2 | 1.885 9 | 62.23 | |
Baichuan-13b | KGLLM(Ours) | 1.276 7 | 5.844 3 | 3.900 5 | 2.796 0 | 2.043 1 | 3.646 0 | 5.608 0 | 0.132 5 | 5.608 0 | 64.37 |
Semantic only | 1.488 8 | 5.467 1 | 3.529 7 | 2.483 8 | 1.776 4 | 3.314 3 | 4.753 6 | 0.093 1 | 4.753 6 | 62.42 | |
Random | 1.535 9 | 5.253 2 | 3.318 5 | 2.326 3 | 1.670 7 | 3.142 2 | 4.550 1 | 0.114 2 | 4.550 1 | 62.05 | |
ChatGLM3-6B | KGLLM(Ours) | 2.608 6 | 4.105 5 | 2.386 5 | 1.716 7 | 1.281 6 | 2.372 6 | 2.166 8 | 0.151 8 | 2.166 8 | 64.03 |
Semantic only | 2.480 6 | 3.211 9 | 1.967 7 | 1.484 3 | 1.155 4 | 1.954 8 | 1.996 9 | 0.209 9 | 1.996 9 | 62.65 | |
Random | 1.797 8 | 2.459 6 | 1.530 4 | 1.167 3 | 0.905 8 | 1.515 8 | 1.728 9 | 0.119 6 | 1.728 9 | 62.59 | |
Qwen1.5-7B | KGLLM(Ours) | 1.441 9 | 3.154 4 | 1.923 2 | 1.420 7 | 1.084 7 | 1.895 8 | 1.192 9 | 0.039 1 | 1.192 9 | 61.41 |
Semantic only | 1.294 6 | 2.869 4 | 1.638 0 | 1.164 8 | 0.863 8 | 1.634 0 | 1.053 3 | 0.022 0 | 1.053 3 | 60.06 | |
Random | 1.250 1 | 2.939 5 | 1.649 4 | 1.167 6 | 0.865 2 | 1.655 4 | 0.889 7 | 0.002 2 | 0.889 7 | 59.84 | |
Qwen1.5-14B | KGLLM(Ours) | 1.806 5 | 5.206 8 | 3.195 7 | 2.267 7 | 1.652 1 | 3.080 6 | 3.234 0 | 0.028 2 | 3.234 0 | 61.85 |
Semantic only | 1.700 9 | 4.782 2 | 2.845 6 | 2.010 9 | 1.473 4 | 2.778 0 | 2.630 2 | 0.017 0 | 2.630 2 | 61.11 | |
Random | 1.973 3 | 4.038 2 | 2.470 8 | 1.823 0 | 1.380 6 | 2.428 2 | 1.640 9 | 0.050 3 | 1.640 9 | 61.66 | |
Average | KGLLM(Ours) | 1.810 3 | 4.358 6 | 2.732 2 | 1.981 0 | 1.473 3 | 2.636 3 | 2.954 9 | 0.124 5 | 2.954 9 | 63.24 |
Semantic only | 1.729 0 ⬇0.081 3 | 3.977 7 ⬇0.381 0 | 2.427 8 ⬇0.304 4 | 1.742 9 ⬇0.238 1 | 1.290 1 ⬇0.183 2 | 2.359 6 ⬇0.276 7 | 2.518 6 ⬇0.436 4 | 0.092 6 ⬇0.031 9 | 2.518 6 ⬇0.436 3 | 61.69 ⬇1.54 | |
Random | 1.607 7 ⬇0.202 7 | 3.604 3 ⬇0.754 3 | 2.192 7 ⬇0.539 5 | 1.588 5 ⬇0.392 5 | 1.186 0 ⬇0.287 2 | 2.142 9 ⬇0.493 4 | 2.139 1 ⬇0.815 8 | 0.078 3 ⬇0.046 2 | 2.139 1 ⬇0.815 8 | 61.67 ⬇1.56 |
Table 7
Knowledge filtering samples based on information entropy
问题: 稻瘟病可以发生在水稻的各个生育期,根据发生时期和部位不同,可分为苗瘟、叶瘟、叶枕瘟、节瘟、穗瘟、穗颈瘟、枝梗瘟和谷粒瘟,其中穗颈瘟和枝梗瘟有什么症状? |
---|
检索路径:[{'relation': '症状', 'source': '水稻', 'target': '拔节期症状'}, {'relation': '症状', 'source': '苗瘟', 'target': '水稻3叶期以前'}, {'relation': '症状', 'source': '苗瘟', 'target': '芽和芽鞘上出现水渍状斑点'}, {'relation': '症状', 'source': '苗瘟', 'target': '病苗基部变黑褐色'}, {'relation': '症状', 'source': '苗瘟', 'target': '上部呈黄褐色或淡红色'}, {'relation': '症状', 'source': '苗瘟', 'target': '病苗严重时枯死'}, {'relation': '症状', 'source': '苗瘟', 'target': '潮湿时病部可长出灰绿色霉层'}, {'relation': '症状', 'source': '叶枕瘟', 'target': '叶耳易感病'}, {'relation': '症状', 'source': '叶枕瘟', 'target': '初为污绿色病斑'}, {'relation': '症状', 'source': '叶枕瘟', 'target': '向叶环、叶舌、叶鞘及叶片不规则扩展'}, {'relation': '症状', 'source': '叶枕瘟', 'target': '最后病斑灰白色至灰褐色'}, {'relation': '症状', 'source': '叶枕瘟', 'target': '潮湿时长出灰绿色霉层'}, {'relation': '症状', 'source': '叶枕瘟', 'target': '病叶早期枯死'}, {'relation': '症状', 'source': '叶枕瘟', 'target': '容易引起穗颈瘟'}, {'relation': '症状', 'source': '节瘟', 'target': '主要发生在穗颈下第一、二节上'}, {'relation': '症状', 'source': '节瘟', 'target': '初为褐色或黑褐色小点'}, {'relation': '症状', 'source': '节瘟', 'target': '环状扩大至整个节部'}, {'relation': '症状', 'source': '节瘟', 'target': '潮湿时节上生出灰绿色霉层'}, {'relation': '症状', 'source': '节瘟', 'target': '易折断'}, {'relation': '症状', 'source': '节瘟', 'target': '亦可造成白穗'}, {'relation': '症状', 'source': '穗颈瘟', 'target': '浅褐色小点'}, {'relation': '症状', 'source': '穗颈瘟', 'target': '黄白色、褐色或黑色斑点'}, {'relation': '症状', 'source': '穗颈瘟', 'target': '全白穗'}, {'relation': '症状', 'source': '枝梗瘟', 'target': '浅褐色小点'}, {'relation': '症状', 'source': '枝梗瘟', 'target': '黄白色、褐色或黑色病斑'}, {'relation': '症状', 'source': '枝梗瘟', 'target': '发病迟谷粒不充实'}, {'relation': '症状', 'source': '谷粒瘟', 'target': '发生在谷壳和护颖上'}, {'relation': '症状', 'source': '谷粒瘟', 'target': '发病早的谷壳上病斑大而呈椭圆形,中部灰白色'}, {'relation': '症状', 'source': '谷粒瘟', 'target': '可延及整个谷粒,造成暗灰色或灰白色的瘪谷'}, {'relation': '症状', 'source': '谷粒瘟', 'target': '发病迟的则为椭圆形或不规则形的褐色斑点'}, {'relation': '症状', 'source': '谷粒瘟', 'target': '严重时,谷粒不饱满,米粒变黑'}, {'relation': '症状类型', 'source': '叶瘟', 'target': '白点型'}, {'relation': '症状类型', 'source': '叶瘟', 'target': '急性型'}, {'relation': '症状类型', 'source': '叶瘟', 'target': '慢性型'}, {'relation': '症状类型', 'source': '叶瘟', 'target': '褐点型'}] |
信息熵过滤路径:[{'relation': '症状', 'source': '水稻', 'target': '拔节期症状'}, {'relation': '症状', 'source': '叶枕瘟', 'target': '向叶环、叶舌、叶鞘及叶片不规则扩展'}, {'relation': '症状', 'source': '枝梗瘟', 'target': '黄白色、褐色或黑色病斑'}, {'relation': '症状', 'source': '叶枕瘟', 'target': '初为污绿色病斑'}, {'relation': '症状', 'source': '叶枕瘟', 'target': '病叶早期枯死'}, {'relation': '症状', 'source': '节瘟', 'target': '初为褐色或黑褐色小点'}, {'relation': '症状', 'source': '苗瘟', 'target': '上部呈黄褐色或淡红色'}, {'relation': '症状', 'source': '苗瘟', 'target': '水稻3叶期以前'}, {'relation': '症状', 'source': '苗瘟', 'target': '病苗严重时枯死'}, {'relation': '症状', 'source': '苗瘟', 'target': '病苗基部变黑褐色'}, {'relation': '症状类型', 'source': '叶瘟', 'target': '褐点型'}, {'relation': '症状类型', 'source': '叶瘟', 'target': '白点型'}, {'relation': '症状', 'source': '枝梗瘟', 'target': '浅褐色小点'}, {'relation': '症状', 'source': '苗瘟', 'target': '芽和芽鞘上出现水渍状斑点'}, {'relation': '症状类型', 'source': '叶瘟', 'target': '慢性型'}, {'relation': '症状', 'source': '叶枕瘟', 'target': '最后病斑灰白色至灰褐色'}, {'relation': '症状类型', 'source': '叶瘟', 'target': '急性型'}, {'relation': '症状', 'source': '叶枕瘟', 'target': '潮湿时长出灰绿色霉层'}, { 'relation': '症状', 'source': '穗颈瘟', 'target': '黄白色、褐色或黑色斑点'}, {'relation': '症状', 'source': '苗瘟', 'target': '潮湿时病部可长出灰绿色霉层'}] |
Table 8
Model-generated results under different knowledge constraints
Backbone | Model | GOOGLE BLEU | BLEU | ROUGE | BertScore/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BLEU_1 | BLEU_2 | BLEU_3 | BLEU_4 | Mean_BLEU | ROUGE_1 | ROUGE_2 | ROUGE_3 | ||||
Baichuan-7b | KGLLM(Ours) | 1.918 0 | 3.482 2 | 2.255 1 | 1.703 9 | 1.304 8 | 2.186 5 | 2.572 6 | 0.271 0 | 2.572 6 | 64.53 |
Path Discription | 1.723 2 | 3.323 5 | 2.210 5 | 1.665 5 | 1.259 8 | 2.114 8 | 2.941 2 | 0.176 5 | 2.941 2 | 64.20 | |
Hard Constraint | 0.759 7 | 1.052 9 | 0.558 2 | 0.387 1 | 0.283 8 | 0.570 5 | 0.160 0 | 0.000 0 | 0.160 0 | 54.46 | |
Baichuan-13b | KGLLM(Ours) | 1.276 7 | 5.844 3 | 3.900 5 | 2.796 0 | 2.043 1 | 3.646 0 | 5.608 0 | 0.132 5 | 5.608 0 | 64.37 |
Path Discription | 1.835 7 | 5.556 7 | 3.643 6 | 2.620 7 | 1.933 2 | 3.438 5 | 5.219 8 | 0.239 6 | 5.219 8 | 63.95 | |
Hard Constraint | 0.609 2 | 1.043 3 | 0.597 4 | 0.423 6 | 0.316 2 | 0.595 1 | 0.287 1 | 0.000 0 | 0.287 1 | 55.82 | |
ChatGLM3-6B | KGLLM(Ours) | 2.608 6 | 4.105 5 | 2.386 5 | 1.716 7 | 1.281 6 | 2.372 6 | 2.166 8 | 0.151 8 | 2.166 8 | 64.03 |
Path Discription | 2.709 3 | 3.813 5 | 2.211 3 | 1.608 4 | 1.217 0 | 2.212 6 | 2.031 6 | 0.122 0 | 2.031 6 | 63.98 | |
Hard Constraint | 0.379 8 | 0.549 3 | 0.285 3 | 0.187 9 | 0.130 4 | 0.288 2 | 0.138 5 | 0.000 0 | 0.138 5 | 51.03 | |
Qwen1.5-7B | KGLLM(Ours) | 1.441 9 | 3.154 4 | 1.923 2 | 1.420 7 | 1.084 7 | 1.895 8 | 1.192 9 | 0.039 1 | 1.192 9 | 61.41 |
Path Discription | 1.157 5 | 2.665 4 | 1.616 2 | 1.180 0 | 0.888 7 | 1.587 6 | 1.383 8 | 0.060 2 | 1.383 8 | 60.20 | |
Hard Constraint | 0.843 3 | 1.948 5 | 1.044 7 | 0.724 3 | 0.531 6 | 1.062 3 | 0.109 9 | 0.000 0 | 0.109 9 | 58.44 | |
Qwen1.5-14B | KGLLM(Ours) | 1.806 5 | 5.206 8 | 3.195 7 | 2.267 7 | 1.652 1 | 3.080 6 | 3.234 0 | 0.028 2 | 3.234 0 | 61.85 |
Path Discription | 1.461 7 | 4.807 3 | 3.016 7 | 2.196 3 | 1.635 1 | 2.913 8 | 2.562 3 | 0.051 0 | 2.562 3 | 61.51 | |
Hard Constraint | 0.956 2 | 2.129 2 | 1.274 2 | 0.946 5 | 0.721 2 | 1.267 8 | 0.174 1 | 0.000 0 | 0.174 1 | 60.01 | |
Average | KGLLM(Ours) | 1.810 3 | 4.358 6 | 2.732 2 | 1.981 0 | 1.473 3 | 2.636 3 | 2.954 9 | 0.124 5 | 2.954 9 | 6324 |
Path Discription | 1.777 5 ⬇0.032 9 | 4.033 3 ⬇0.325 4 | 2.539 7 ⬇0.192 5 | 1.854 2 ⬇0.126 8 | 1.386 8 ⬇0.086 5 | 2.453 5 ⬇0.182 8 | 2.827 7 ⬇0.127 1 | 0.129 8 ⬇-0.005 3 | 2.827 7 ⬇0.127 1 | 62.77 ⬇0.47 | |
Hard Constraint | 0.709 6 ⬇1.100 7 | 1.344 6 ⬇3.014 0 | 0.752 0 ⬇1.980 2 | 0.533 9 ⬇1.447 1 | 0.396 6 ⬇1.076 6 | 0.756 8 ⬇1.879 5 | 0.173 9 ⬇2.781 0 | 0.000 0 ⬇0.124 5 | 0.173 9 ⬇2.781 0 | 55.95 ⬇7.28 |
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
姜京池, 关昌赫, 刘劼, 等. 基于主动学习与众包的农业知识标注体系及语料库构建[J]. 中文信息学报, 2023, 37(1): 33-45.
|
|
|
21 |
|
22 |
王春雨, 王芳. 基于条件随机场的农业命名实体识别研究[J]. 河北农业大学学报, 2014, 37(1): 132-135.
|
|
|
23 |
|
24 |
沈利言, 姜海燕, 胡滨, 等. 水稻病虫草害与药剂实体关系联合抽取算法[J]. 南京农业大学学报, 2020, 43(6): 1151-1161.
|
|
|
25 |
|
26 |
|
27 |
|
28 |
|
29 |
|
30 |
|
31 |
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||