ZHAO Yingping1(), LIANG Jinming1, CHEN Beizhang1, DENG Xiaoling4,5, ZHANG Yi4,5, XIONG Zheng1,2,3, PAN Ming1,2,3, MENG Xiangbao1,2,3(
)
Received:
2025-03-25
Online:
2025-07-24
Foundation items:
Guangdong Provincial Modern Agricultural Industry Common Key Technology Research and Innovation Team Construction Project(2024CXTD18); Key Technology Research and Demonstration of Smart Management and Control in Lingnan Orchards(2023B0202090001)
About author:
ZHAO Yingping, E-mail: yingping.zhao@gmail.com
corresponding author:
CLC Number:
ZHAO Yingping, LIANG Jinming, CHEN Beizhang, DENG Xiaoling, ZHANG Yi, XIONG Zheng, PAN Ming, MENG Xiangbao. Research Progress and Prospects of Multi-Agent Large Language Models in Agricultural Applications[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202503026.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202503026
Table 2
Pseudocode for Multimodal Data Fusion Process
多模态数据融合伪代码: |
---|
输入: 图像数据 (例如:遥感图像、作物生长图像) 传感器数据 (例如:温湿度、光照、土壤湿度) 文本数据 (例如:农业管理日志、天气报告) 步骤: (1)数据预处理 对图像数据 进行标准化、裁剪或增强等 对传感器数据 进行去噪、插值、单位标准化 对文本数据 进行分词、去停用词 (2)特征提取 使用图像模型(如ViT)提取图像特征:
使用时间序列模型(如长短时记忆
使用文本模型(如BERT)提取文本特征:
(3)特征对齐 将不同模态的特征映射到相同的维度空间:
(4)特征融合
输出: 融合后的统一特征表示 ,作为下游任务的输入基础 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
PAL S,
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
SMITH. The contract net protocol: High-level communication and control in a distributed problem solver[J]. IEEE transactions on computers, 1980, C-29(12): 1104-1113.
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
张浩, 蔡晨馨, 屈傲, 等. Beehive: 基于智能体的智慧农场操作系统[J]. 计算, 2025, 1(2): 63-70.
|
|
|
[53] |
刘海峰, 孟祥宝, 谢秋波, 等. 我国智能化植物工厂发展现状与对策建议[J]. 广东科技, 2021, 30(7): 69-71.
|
[54] |
万欢, 欧媛珍, 管宪鲁, 等. 无人农机作业环境感知技术综述[J]. 农业工程学报, 2024, 40(8): 1-18.
|
|
|
[55] |
赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7.
|
|
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
赵春江, 李静晨, 吴华瑞, 等. 基于大语言模型推理的数字孪生平台蔬菜作物生长模型研究[J]. 智慧农业(中英文), 2024, 6(6): 63-71.
|
|
|
[62] |
任荣荣, 胡崇宇, 吴国龙. 农业种植智能体(Agri-agent)的构建与应用展望[J]. 农业展望, 2024, 20(6): 92-106.
|
|
|
[63] |
吴华瑞, 李晓锁. 大模型在设施蔬菜智能化生产中的应用[J]. 蔬菜, 2024(11): 1-8.
|
|
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
张宇芹, 朱景全, 董薇, 等. 农业垂直领域大语言模型构建流程和技术展望[J]. 农业大数据学报, 2024, 6(3): 412-423.
|
|
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[1] | MA Liu, MAO Kebiao, GUO Zhonghua. Defogging Remote Sensing Images Method Based on a Hybrid Attention-Based Generative Adversarial Network [J]. Smart Agriculture, 2025, 7(2): 172-182. |
[2] | ZHAO Bingting, HUA Chuanhai, YE Chenyang, XIONG Yuchun, QIAN Tao, CHENG Tao, YAO Xia, ZHENG Hengbiao, ZHU Yan, CAO Weixing, JIANG Chongya. Research Progress on Remote Sensing Monitoring and Intelligent Decision-Making Algorithms for Rice Production [J]. Smart Agriculture, 2025, 7(2): 57-72. |
[3] | XU Shiwei, LI Qianchuan, LUAN Rupeng, ZHUANG Jiayu, LIU Jiajia, XIONG Lu. Agricultural Market Monitoring and Early Warning: An Integrated Forecasting Approach Based on Deep Learning [J]. Smart Agriculture, 2025, 7(1): 57-69. |
[4] | GONG Yu, WANG Ling, ZHAO Rongqiang, YOU Haibo, ZHOU Mo, LIU Jie. Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data [J]. Smart Agriculture, 2025, 7(1): 97-110. |
[5] | QI Zijun, NIU Dangdang, WU Huarui, ZHANG Lilin, WANG Lunfeng, ZHANG Hongming. Chinese Kiwifruit Text Named Entity Recognition Method Based on Dual-Dimensional Information and Pruning [J]. Smart Agriculture, 2025, 7(1): 44-56. |
[6] | ZHANG Hui, HU Jun, SHI Hang, LIU Changxi, WU Miao. Precision Target Spraying System Integrated with Remote Deep Learning Recognition Model for Cabbage Plant Centers [J]. Smart Agriculture, 2024, 6(6): 85-95. |
[7] | LU Bibo, LIANG Di, YANG Jie, SONG Aiqing, HUANGFU Shangwei. Image Segmentation Method of Chinese Yam Leaves in Complex Background Based on Improved ENet [J]. Smart Agriculture, 2024, 6(6): 109-120. |
[8] | YU Fenghua, XU Tongyu, GUO Zhonghui, BAI Juchi, XIANG Shuang, GUO Sien, JIN Zhongyu, LI Shilong, WANG Shikuan, LIU Meihan, HUI Yinxuan. Research Status and Prospects of Key Technologies for Rice Smart Unmanned Farms [J]. Smart Agriculture, 2024, 6(6): 1-22. |
[9] | LUO Youlu, PAN Yonghao, XIA Shunxing, TAO Youzhi. Lightweight Apple Leaf Disease Detection Algorithm Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(5): 128-138. |
[10] | LIU Yi, ZHANG Yanjun. ReluformerN: Lightweight High-Low Frequency Enhanced for Hyperspectral Agricultural Lancover Classification [J]. Smart Agriculture, 2024, 6(5): 74-87. |
[11] | NIAN Yue, ZHAO Kaixuan, JI Jiangtao. Cow Hoof Slippage Detecting Method Based on Enhanced DeepLabCut Model [J]. Smart Agriculture, 2024, 6(5): 153-163. |
[12] | ZHANG Yanqi, ZHOU Shuo, ZHANG Ning, CHAI Xiujuan, SUN Tan. A Regional Farming Pig Counting System Based on Improved Instance Segmentation Algorithm [J]. Smart Agriculture, 2024, 6(4): 53-63. |
[13] | WENG Zhi, FAN Qi, ZHENG Zhiqiang. Automatic Measurement Method of Beef Cattle Body Size Based on Multimodal Image Information and Improved Instance Segmentation Network [J]. Smart Agriculture, 2024, 6(4): 64-75. |
[14] | CAO Bingxue, LI Hongfei, ZHAO Chunjiang, LI Jin. The Path of Smart Agricultural Technology Innovation Leading Development of Agricultural New Quality Productivity [J]. Smart Agriculture, 2024, 6(4): 116-127. |
[15] | HOU Yiting, RAO Yuan, SONG He, NIE Zhenjun, WANG Tan, HE Haoxu. A Rapid Detection Method for Wheat Seedling Leaf Number in Complex Field Scenarios Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(4): 128-137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||