HAN Wenkai1, LI Tao2, FENG Qingchun2, CHEN Liping1,2(
)
Received:2025-05-03
Online:2025-09-23
Foundation items:National Key Research and Development Program of China(2024YFD2000602); Science and Technology Program of Tianjin, China(23YFZCSN00290); Youth Research Foundation of Beijing Academy of Agriculture and Forestry Sciences, China(QNJJ202318); Beijing Nova Program, China(20220484023)
About author:HAN Wenkai, E-mail: m17165086050@163.com
corresponding author:
CLC Number:
HAN Wenkai, LI Tao, FENG Qingchun, CHEN Liping. Research on a Lightweight Apple Instance Segmentation Algorithm Based on SSW-YOLOv11n for Complex Orchard Environments[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202505002.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202505002
Table 2
SSW-YOLOv11n lightweight instance segmentation research ablation experiment results
| 序号 | Slim-Neck | SimAM | Wise-IoU | Box mAP50/% | Mask P/% | Mask R/% | Mask mAP50/% | GFLOPS | 权重大小/MB | FPS |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 74.6 | 72.4 | 72.9 | 74.3 | 10.4 | 5.89 | 25.1 | |||
| 2 | √ | 75.1 | 72.5 | 73.4 | 75.1 | 10.0 | 5.72 | 26.5 | ||
| 3 | √ | 75.6 | 73.1 | 73.7 | 75.3 | 9.8 | 5.60 | 26.8 | ||
| 4 | √ | 74.7 | 71.3 | 71.2 | 74.8 | 10.1 | 5.64 | 25.5 | ||
| 5 | √ | √ | 76.1 | 72.7 | 72.3 | 76.2 | 9.3 | 5.28 | 28.4 | |
| 6 | √ | √ | 75.5 | 72.2 | 72.5 | 75.5 | 9.7 | 5.05 | 27.9 | |
| 7 | √ | √ | 75.7 | 72.8 | 72.6 | 75.6 | 9.5 | 4.85 | 27.6 | |
| 8 | √ | √ | √ | 76.3 | 73.5 | 73.8 | 76.7 | 9.1 | 4.55 | 29.8 |
Table 3
Comparative experiment results of different models of SSW-YOLOv11n lightweight instance segmentation research
| 模型 | Box mAP50/% | Mask P/% | Mask R/% | Mask mAP50/% | GFLOPS | 权重大小/MB | FPS |
|---|---|---|---|---|---|---|---|
| Mask R-CNN | 43.2 | 42.5 | 54.1 | 53.5 | 245 | 205 | 24.5 |
| SOLO | 47.2 | 57.2 | 55.3 | 56.4 | 132 | 176 | 24.6 |
| YOLACT | 44.8 | 57.9 | 42.4 | 55.3 | 79.6 | 143 | 24.8 |
| YOLOv11n | 74.6 | 72.4 | 72.9 | 74.3 | 10.4 | 5.89 | 25.1 |
| SSW-YOLOv11n | 76.3 | 73.5 | 73.8 | 76.7 | 9.1 | 4.55 | 29.8 |
| [1] |
陈青, 殷程凯, 郭自良, 等 . 苹果采摘机器人关键技术研究现状与发展趋势[J]. 农业工程学报, 2023, 39(4): 1-15.
|
|
|
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
贾伟宽, 孟虎, 马晓慧, 等 . 基于优化Transformer网络的绿色目标果实高效检测模型[J]. 农业工程学报, 2021, 37(14): 163-170.
|
|
|
|
| [17] |
|
| [18] |
|
| [19] |
胡广锐, 周建国, 陈超, 等 . 融合轻量化网络与注意力机制的果园环境下苹果检测方法[J]. 农业工程学报, 2022, 38(19): 131-142.
|
|
|
|
| [20] |
罗友璐, 潘勇浩, 夏顺兴, 等 . 基于改进YOLOv8的苹果叶病害轻量化检测算法[J]. 智慧农业(中英文), 2024, 6(5): 128-138.
|
|
|
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [1] | LI Ruijie, WANG Aidong, WU Huaxing, LI Ziqiu, FENG Xiangqian, HONG Weiyuan, TANG Xuejun, QIN Jinhua, WANG Danying, CHU Guang, ZHANG Yunbo, CHEN Song. Remote Sensing for Rice Growth Stages Monitoring: Research Progress, Bottleneck Problems and Technical Optimization Paths [J]. Smart Agriculture, 2025, 7(3): 89-107. |
| [2] | HAN Yu, QI Kangkang, ZHENG Jiye, LI Jinai, JIANG Fugui, ZHANG Xianglun, YOU Wei, ZHANG Xia. Lightweight Cattle Facial Recognition Method Based on Improved YOLOv11 [J]. Smart Agriculture, 2025, 7(3): 173-184. |
| [3] | MA Liu, MAO Kebiao, GUO Zhonghua. Defogging Remote Sensing Images Method Based on a Hybrid Attention-Based Generative Adversarial Network [J]. Smart Agriculture, 2025, 7(2): 172-182. |
| [4] | NIU Ziang, QIU Zhengjun. Extraction Method of Maize Plant Skeleton and Phenotypic Parameters Based on Improved YOLOv11-Pose [J]. Smart Agriculture, 2025, 7(2): 95-105. |
| [5] | XU Shiwei, LI Qianchuan, LUAN Rupeng, ZHUANG Jiayu, LIU Jiajia, XIONG Lu. Agricultural Market Monitoring and Early Warning: An Integrated Forecasting Approach Based on Deep Learning [J]. Smart Agriculture, 2025, 7(1): 57-69. |
| [6] | GONG Yu, WANG Ling, ZHAO Rongqiang, YOU Haibo, ZHOU Mo, LIU Jie. Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data [J]. Smart Agriculture, 2025, 7(1): 97-110. |
| [7] | QI Zijun, NIU Dangdang, WU Huarui, ZHANG Lilin, WANG Lunfeng, ZHANG Hongming. Chinese Kiwifruit Text Named Entity Recognition Method Based on Dual-Dimensional Information and Pruning [J]. Smart Agriculture, 2025, 7(1): 44-56. |
| [8] | ZHANG Hui, HU Jun, SHI Hang, LIU Changxi, WU Miao. Precision Target Spraying System Integrated with Remote Deep Learning Recognition Model for Cabbage Plant Centers [J]. Smart Agriculture, 2024, 6(6): 85-95. |
| [9] | LU Bibo, LIANG Di, YANG Jie, SONG Aiqing, HUANGFU Shangwei. Image Segmentation Method of Chinese Yam Leaves in Complex Background Based on Improved ENet [J]. Smart Agriculture, 2024, 6(6): 109-120. |
| [10] | ZHOU Xiushan, WEN Luting, JIE Baifei, ZHENG Haifeng, WU Qiqi, LI Kene, LIANG Junneng, LI Yijian, WEN Jiayan, JIANG Linyuan. Real-time Detection Algorithm of Expanded Feed Image on the Water Surface Based on Improved YOLOv11 [J]. Smart Agriculture, 2024, 6(6): 155-167. |
| [11] | LUO Youlu, PAN Yonghao, XIA Shunxing, TAO Youzhi. Lightweight Apple Leaf Disease Detection Algorithm Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(5): 128-138. |
| [12] | LIU Yi, ZHANG Yanjun. ReluformerN: Lightweight High-Low Frequency Enhanced for Hyperspectral Agricultural Lancover Classification [J]. Smart Agriculture, 2024, 6(5): 74-87. |
| [13] | NIAN Yue, ZHAO Kaixuan, JI Jiangtao. Cow Hoof Slippage Detecting Method Based on Enhanced DeepLabCut Model [J]. Smart Agriculture, 2024, 6(5): 153-163. |
| [14] | ZHANG Yanqi, ZHOU Shuo, ZHANG Ning, CHAI Xiujuan, SUN Tan. A Regional Farming Pig Counting System Based on Improved Instance Segmentation Algorithm [J]. Smart Agriculture, 2024, 6(4): 53-63. |
| [15] | WENG Zhi, FAN Qi, ZHENG Zhiqiang. Automatic Measurement Method of Beef Cattle Body Size Based on Multimodal Image Information and Improved Instance Segmentation Network [J]. Smart Agriculture, 2024, 6(4): 64-75. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||