LI Wenzheng1,2,3,4, YANG Xingting2,3,4, SUN Chuanheng2,3,4, CUI Tengpeng2,3,4,5, WANG Hui2,3,4,6, LI Shanshan2,3,4,7, LI Wenyong2,3,4(
)
Received:2025-07-16
Online:2025-09-23
Foundation items:National Key Research and Development Program Project(2022YFD2001801); Supported by Beijing Natural Science Foundation(4252037)
About author:LI Wenzheng, E-mail: 790414846@qq.com
corresponding author:
CLC Number:
LI Wenzheng, YANG Xingting, SUN Chuanheng, CUI Tengpeng, WANG Hui, LI Shanshan, LI Wenyong. Light-trapping Small-sized Rice Pest Detection Method by Combining Spatial Depth Transform Convolution and Multi-scale Attention Mechanism[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202507024.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202507024
Table 3
Comparison results of different detection models on dataset_Planthopper
| 检测模型 | P/% | R/% | mAP50/% | mAP50-95/% | Parameters/M | GFLOPs |
|---|---|---|---|---|---|---|
| YOLOv5x | 71.1 | 69.0 | 74.0 | 39.2 | 97 | 246 |
| YOLOv8x | 70.1 | 68.8 | 73.0 | 37.7 | 68 | 256 |
| YOLOv10x | 70.8 | 67.0 | 72.2 | 38.9 | 32 | 171 |
| YOLOv11x | 72.7 | 70.0 | 75.3 | 40.2 | 56 | 196 |
| YOLOv12x | 72.1 | 69.0 | 75.2 | 40.4 | 59 | 200 |
| Salience DETR-R50 | — | 86.1 | 72.1 | 42.1 | 56 | 201 |
| Relation DETR-R50 | — | 87.0 | 73.9 | 43.1 | 49 | 303 |
| RT-DETR-x | 74.6 | 70.1 | 73.9 | 41.1 | 65 | 223 |
| 改进的YOLOv11x | 77.5 | 73.5 | 80.8 | 44.9 | 40 | 246 |
Table 4
The t-test results of the improved model and the comparison model for the light-trapping rice pest detection research
| 检测模型 | t检验 | 是否显著 |
|---|---|---|
| YOLOv5x | t=217.46, p=3.10e-32 | 是 |
| YOLOv8x | t=249.44, p=2.62e-33 | 是 |
| YOLOv10x | t=275.03, p=4.53e-34 | 是 |
| YOLOv11x | t=175.89, p=1.41e-30 | 是 |
| YOLOv12x | t=179.09, p=1.02e-30 | 是 |
| Salience DETR-R50 | t=278.23, p=3.68e-34 | 是 |
| Relation DETR-R50 | t=220.66, p=2.39e-32 | 是 |
| RT-DETR-x | t=219.10, p=2.71e-32 | 是 |
Table 5
Ablation experimental results of the improved YOLOv11x model on dataset_Planthopper
| 模型 | P/% | R/% | mAP50/% | mAP50-95/% | Parameters/M | GFLOPs |
|---|---|---|---|---|---|---|
| YOLOv11x | 72.7 | 70.0 | 75.3 | 40.2 | 56 | 196 |
| YOLOv11x+C3k2-EMA | 73.5 | 70.0 | 76.8 | 42.2 | 65 | 236 |
| YOLOv11x+SPD-Conv | 71.6 | 70.4 | 75.4 | 41.2 | 48 | 171 |
| YOLOv11x+P2 | 74.4 | 71.6 | 78.2 | 42.9 | 59 | 252 |
| YOLOv11x+P2-P5 | 76.5 | 70.0 | 78.8 | 44.0 | 47 | 242 |
| YOLOv11x+P2-P5+C3k2-EMA | 77.0 | 73.1 | 80.1 | 44.4 | 48 | 277 |
| YOLOv11x+P2-P5+C3k2-EMA+SPD-Conv | 76.5 | 73.9 | 80.1 | 44.8 | 40 | 246 |
| YOLOv11x+P2-P5+C3k2-EMA+SPD-Conv+WIoUv3 | 77.5 | 73.5 | 80.8 | 44.9 | 40 | 246 |
Table 6
The t-test results of the ablation experiment for the light-trapping rice pest detection research
| 模型 | t检验 | 是否显著 |
|---|---|---|
| YOLO v11x+C3k2-EMA | t=47.97, p=1.90e-20 | 是 |
| YOLO v11x+SPD-Conv | t=3.20, p=4.98e-3 | 是 |
| YOLO v11x+P2 | t=111.93, p=4.78e-27 | 是 |
| YOLO v11x+P2+P5 | t=92.74, p=1.40e-25 | 是 |
| YOLO v11x +P2+C3k2-EMA | t=153.50, p=1.63e-29 | 是 |
| YOLO v11x +P2+C3k2-EMA+SPD-Conv | t=154.14, p=1.51e-29 | 是 |
| YOLO v11x+P2+C3k2-EMA+SPD-Conv+WIoUv3 | t=175.89, p=1.41e-30 | 是 |
Table 7
Comparative tests of different attention mechanisms for the light-trapping rice pest detection research
| 注意力机制 | P/% | R/% | mAP50/% | mAP50-95/% | Parameters/M | GFLOPs |
|---|---|---|---|---|---|---|
| CBAM | 75.0 | 70.3 | 77.1 | 40.2 | 41 | 242 |
| ECA | 76.1 | 73.9 | 79.9 | 43.7 | 40 | 242 |
| SEAM | 74.6 | 72.1 | 78.2 | 41.0 | 41 | 246 |
| SimAM | 77.7 | 70.7 | 78.8 | 43.8 | 40 | 241 |
| EMA | 77.5 | 73.5 | 80.8 | 44.9 | 40 | 246 |
Table 8
WIoUv3 hyperparameter comparison test for the light-trapping rice pest detection research
| 损失函数 | α | δ | P/% | R/% | mAP50/% | mAP50-95/% |
|---|---|---|---|---|---|---|
| CIoU | | | 76.5 | 73.9 | 80.1 | 44.8 |
| WIoUv3 | 1.4 | 5.0 | 76.7 | 72.8 | 79.5 | 41.8 |
| WIoUv3 | 1.6 | 4.0 | 75.4 | 72.1 | 78.7 | 42.3 |
| WIoUv3 | 1.7 | 4.0 | 77.0 | 73.4 | 80.2 | 43.6 |
| WIoUv3 | 1.8 | 4.0 | 77.5 | 73.5 | 80.8 | 44.9 |
| WIoUv3 | 1.9 | 3.0 | 77.2 | 72.2 | 79.4 | 43.0 |
| WIoUv3 | 1.9 | 4.0 | 75.9 | 71.3 | 78.5 | 43.2 |
| WIoUv3 | 2.5 | 2.0 | 75.3 | 69.3 | 76.8 | 40.1 |
| [1] |
朱友理, 何东兵, 邱晓红, 等. 病虫草危害对稻米品质的影响[J]. 中国稻米, 2021, 27(6): 115-118.
|
|
|
|
| [2] |
卓富彦, 陈学新, 夏玉先, 等. 2013—2022 年我国水稻病虫害发生特点与绿色防控技术集成[J].中国生物防治学报, 2024, 40(5): 1207-1213.
|
|
|
|
| [3] |
蔡永凤. 戊唑醇对褐飞虱的生物活性及其作用机制[D]. 武汉: 华中农业大学, 2022
|
|
|
|
| [4] |
刘万才, 刘振东, 黄冲, 等. 近10年农作物主要病虫害发生危害情况的统计和分析[J]. 植物保护, 2016, 42(5): 1-9, 46.
|
|
|
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
彭红星, 徐慧明, 高宗梅, 等. 基于改进YOLOF模型的田间农作物害虫检测方法[J]. 农业机械学报, 2023, 54(4): 285-294, 303.
|
|
|
|
| [9] |
赵辉, 黄镖, 王红君, 等. 基于改进YOLOv7的农田复杂环境下害虫识别算法研究[J]. 农业机械学报, 2023, 54(10): 246-254.
|
|
|
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
蒋心璐, 陈天恩, 王聪, 等. 大田环境下的农业害虫图像小目标检测算法[J]. 计算机工程, 2024, 50(1): 232-241.
|
|
|
|
| [16] |
魏志慧, 张聪, 成泞伸, 等. 一种水稻害虫的小目标检测方法研究[J]. 江苏农业科学, 2024, 52(9): 232-241.
|
|
|
|
| [17] |
谭泗桥, 陈涵, 朱磊, 等. 基于改进YOLOv8m的稻田害虫识别方法[J]. 农业工程学报, 2025, 41(02): 185-195.
|
|
|
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
WOO S,
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [1] | LI Ruijie, WANG Aidong, WU Huaxing, LI Ziqiu, FENG Xiangqian, HONG Weiyuan, TANG Xuejun, QIN Jinhua, WANG Danying, CHU Guang, ZHANG Yunbo, CHEN Song. Remote Sensing for Rice Growth Stages Monitoring: Research Progress, Bottleneck Problems and Technical Optimization Paths [J]. Smart Agriculture, 2025, 7(3): 89-107. |
| [2] | HAN Yu, QI Kangkang, ZHENG Jiye, LI Jinai, JIANG Fugui, ZHANG Xianglun, YOU Wei, ZHANG Xia. Lightweight Cattle Facial Recognition Method Based on Improved YOLOv11 [J]. Smart Agriculture, 2025, 7(3): 173-184. |
| [3] | MA Liu, MAO Kebiao, GUO Zhonghua. Defogging Remote Sensing Images Method Based on a Hybrid Attention-Based Generative Adversarial Network [J]. Smart Agriculture, 2025, 7(2): 172-182. |
| [4] | XU Shiwei, LI Qianchuan, LUAN Rupeng, ZHUANG Jiayu, LIU Jiajia, XIONG Lu. Agricultural Market Monitoring and Early Warning: An Integrated Forecasting Approach Based on Deep Learning [J]. Smart Agriculture, 2025, 7(1): 57-69. |
| [5] | GONG Yu, WANG Ling, ZHAO Rongqiang, YOU Haibo, ZHOU Mo, LIU Jie. Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data [J]. Smart Agriculture, 2025, 7(1): 97-110. |
| [6] | QI Zijun, NIU Dangdang, WU Huarui, ZHANG Lilin, WANG Lunfeng, ZHANG Hongming. Chinese Kiwifruit Text Named Entity Recognition Method Based on Dual-Dimensional Information and Pruning [J]. Smart Agriculture, 2025, 7(1): 44-56. |
| [7] | ZHANG Hui, HU Jun, SHI Hang, LIU Changxi, WU Miao. Precision Target Spraying System Integrated with Remote Deep Learning Recognition Model for Cabbage Plant Centers [J]. Smart Agriculture, 2024, 6(6): 85-95. |
| [8] | LU Bibo, LIANG Di, YANG Jie, SONG Aiqing, HUANGFU Shangwei. Image Segmentation Method of Chinese Yam Leaves in Complex Background Based on Improved ENet [J]. Smart Agriculture, 2024, 6(6): 109-120. |
| [9] | LUO Youlu, PAN Yonghao, XIA Shunxing, TAO Youzhi. Lightweight Apple Leaf Disease Detection Algorithm Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(5): 128-138. |
| [10] | LIU Yi, ZHANG Yanjun. ReluformerN: Lightweight High-Low Frequency Enhanced for Hyperspectral Agricultural Lancover Classification [J]. Smart Agriculture, 2024, 6(5): 74-87. |
| [11] | NIAN Yue, ZHAO Kaixuan, JI Jiangtao. Cow Hoof Slippage Detecting Method Based on Enhanced DeepLabCut Model [J]. Smart Agriculture, 2024, 6(5): 153-163. |
| [12] | ZHANG Yanqi, ZHOU Shuo, ZHANG Ning, CHAI Xiujuan, SUN Tan. A Regional Farming Pig Counting System Based on Improved Instance Segmentation Algorithm [J]. Smart Agriculture, 2024, 6(4): 53-63. |
| [13] | WENG Zhi, FAN Qi, ZHENG Zhiqiang. Automatic Measurement Method of Beef Cattle Body Size Based on Multimodal Image Information and Improved Instance Segmentation Network [J]. Smart Agriculture, 2024, 6(4): 64-75. |
| [14] | HOU Yiting, RAO Yuan, SONG He, NIE Zhenjun, WANG Tan, HE Haoxu. A Rapid Detection Method for Wheat Seedling Leaf Number in Complex Field Scenarios Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(4): 128-137. |
| [15] | LI Hao, DU Yuqiu, XIAO Xingzhu, CHEN Yanxi. Remote Sensing Identification Method of Cultivated Land at Hill County of Sichuan Basin Based on Deep Learning [J]. Smart Agriculture, 2024, 6(3): 34-45. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||