DANG Shanshan1, QIAO Shicheng1,3(), BAI Mingyu1, ZHANG Mingyue2, ZHAO Chenyu1, PAN Chunyu1, WANG Guochen1
Received:
2025-04-23
Online:
2025-08-18
Foundation items:
National Natural Science Foundation Project(62162049); Doctoral Research Startup Fund of Inner Mongolia Minzu University (BS658)(BS658); Open Fund Project of Key Laboratory of Zoonosis of Autonomous Region Higher Education Institutions(MDK2022019); Open Fund Project of Inner Mongolia Autonomous Region Forage Intelligent Equipment Innovation Center(MDK2025050); Supported by Natural Science Foundation of Inner Mongolia Autonomous Region of China(2025LHMS06012)
corresponding author:
CLC Number:
DANG Shanshan, QIAO Shicheng, BAI Mingyu, ZHANG Mingyue, ZHAO Chenyu, PAN Chunyu, WANG Guochen. Small Target Detection Method of Maize Leaf Disease Based on DCC-YOLOv10n[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202504017.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202504017
Table 2
Experimental comparison of attention mechanisms for maize leaf disease detection using YOLOv10n
算法 | P/% | R/% | mAP@0.5/% | GFLOPs | Parameters | 大小/Mb | FPS |
---|---|---|---|---|---|---|---|
YOLOv10n | 94.5 | 87.7 | 92.4 | 8.4 | 2.70 M | 5.8 | 769 |
VoVGSCSP+ECA | 94.0 | 88.3 | 93.2 | 8.0 | 2.68 M | 5.8 | 1 429 |
VoVGSCSP+SE | 93.5 | 87.2 | 93.0 | 8.0 | 2.68 M | 5.8 | 1 429 |
VoVGSCSP+EMA | 95.8 | 88.3 | 93.1 | 8.0 | 2.68 M | 5.8 | 1 250 |
VoVGSCSP+CA | 93.0 | 89.0 | 93.5 | 8.0 | 2.68 M | 5.8 | 1 429 |
VoVGSCSP+CBAM | 95.6 | 89.1 | 93.5 | 8.0 | 2.68 M | 5.8 | 1 429 |
Table 3
The ablation experiment results of maize leaf disease detection based on DCC-YOLOv10n
算法 | DRPAKConv | CBVoVGSCSP | CAFM | P/% | R/% | mAP@0.5/% | GFLOPs | Parameters | 大小/Mb | FPS |
---|---|---|---|---|---|---|---|---|---|---|
YOLOv10n | × | × | × | 94.5 | 87.7 | 92.4 | 8.4 | 2.70 M | 5.8 | 769 |
改进模型A | × | × | √ | 95.5 | 89.6 | 93.9 | 8.5 | 3.05 M | 6.5 | 1 429 |
改进模型B | √ | × | × | 95.1 | 89.3 | 93.3 | 7.8 | 2.66 M | 5.7 | 123 |
改进模型C | × | √ | × | 95.6 | 89.1 | 93.5 | 8.0 | 2.68 M | 5.8 | 1 429 |
改进模型D | √ | √ | × | 95.7 | 88.3 | 93.3 | 7.6 | 2.64 M | 5.7 | 122 |
改进模型E | √ | × | √ | 95.9 | 88.5 | 93.0 | 8.1 | 3.01 M | 6.4 | 114 |
改进模型F | × | √ | √ | 95.1 | 89.8 | 93.8 | 8.3 | 3.03 M | 6.5 | 1 429 |
DCC-YOLOv10n | √ | √ | √ | 96.2 | 90.3 | 94.1 | 7.9 | 2.99 M | 6.4 | 123 |
Table 4
Comparison results of different algorithms for detecting maize leaf diseases
算法 | P/% | R/% | mAP@0.5/% | GFLOPs | Parameters |
---|---|---|---|---|---|
YOLOv8n | 93.5 | 85.4 | 92.4 | 8.1 | 3.01 M |
YOLOv9t | 92.6 | 85.4 | 91.5 | 7.6 | 1.97 M |
YOLOv10n | 94.5 | 87.7 | 92.4 | 8.4 | 2.70 M |
YOLOv10s | 96.1 | 86.1 | 92.9 | 24.5 | 8.04 M |
YOLOv10m | 95.1 | 87.9 | 93.6 | 63.4 | 16.46 M |
YOLOv11n | 94.3 | 83.8 | 91.3 | 6.3 | 2.58 M |
Faster R-Cnn | 58.8 | 93.1 | 89.7 | 369.8 | 136.8 M |
SSD | 92.2 | 74.0 | 85.9 | 61.0 | 24.01 M |
RT-DETR | 91.6 | 83.3 | 88.8 | 103.4 | 31.99 M |
DCC-YOLOv10n | 96.2 | 90.3 | 94.1 | 7.9 | 2.99 M |
Table 5
Comparison of the precision of maize leaf diseases under different algorithms
病害类型 | Faster R-Cnn | SSD | RT-DETR | YOLOv8n | YOLOv9t | YOLOv10n | YOLOv10s | YOLOv10m | YOLOv11n | DCC-YOLOv10n |
---|---|---|---|---|---|---|---|---|---|---|
健康 | 70.6 | 92.3 | 95.5 | 91.5 | 86.2 | 96.1 | 95.9 | 94.1 | 90.4 | 97.7 |
灰斑病 | 53.5 | 93.1 | 89.0 | 92.1 | 91.3 | 92.1 | 97.6 | 95.0 | 91.3 | 97.4 |
锈病 | 50.0 | 89.5 | 87.9 | 91.6 | 95.4 | 92.6 | 95.3 | 94.6 | 97.8 | 93.1 |
叶斑病 | 60.9 | 93.8 | 94.1 | 98.8 | 97.3 | 97.4 | 95.7 | 96.6 | 97.7 | 96.8 |
Table 6
Comparison results of convolution and attention fusion modules for maize leaf disease detection
算法 | P/% | R/% | mAP@0.5/% | GFLOPs | Parameters | 大小/Mb | FPS |
---|---|---|---|---|---|---|---|
YOLOv10n | 94.5 | 87.7 | 92.4 | 8.4 | 2.70 M | 5.8 | 769 |
YOLOv10n+CloFormer | 95.6 | 88.5 | 93.2 | 8.4 | 3.00 M | 6.4 | 1 429 |
YOLOv10n+CoAtNet | 96.7 | 87.1 | 93.4 | 9.2 | 5.99 M | 12.4 | 1 429 |
YOLOv10n+ACmix | 95.3 | 87.5 | 92.8 | 8.4 | 2.91 M | 6.2 | 909 |
YOLOv10n+CAFM | 95.5 | 89.6 | 93.9 | 8.5 | 3.05 M | 6.5 | 1 429 |
[1] |
王子阳, 刘升学, 杨志蕊, 等. 玉米抗旱性的遗传解析[J]. 植物学报, 2024, 59(6): 883-902.
|
|
|
[2] |
|
[3] |
苏俊楷, 段先华, 叶赵兵. 改进YOLOv5算法的玉米病害检测研究[J]. 计算机科学与探索, 2023, 17(4): 933-941.
|
|
|
[4] |
乔世成, 党珊珊, 何海祝, 等. 基于卷积神经网络的农作物病害检测研究综述[J]. 山西农业大学学报(自然科学版), 2025, 45(2): 113-127.
|
|
|
[5] |
骆润玫, 王卫星. 基于卷积神经网络的植物病虫害识别研究综述[J]. 自动化与信息工程, 2021, 42(5): 1-10.
|
|
|
[6] |
李柯泉, 陈燕, 刘佳晨, 等. 基于深度学习的目标检测算法综述[J]. 计算机工程, 2022, 48(7): 1-12.
|
|
|
[7] |
|
[8] |
|
[9] |
|
[10] |
范晓飞, 王林柏, 刘景艳, 等. 基于改进YOLOv4的玉米种子外观品质检测方法[J]. 农业机械学报, 2022, 53(7): 226-233.
|
|
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
施杰, 林双双, 张威, 等. 基于轻量化改进型YOLOv5s的玉米病虫害检测方法[J]. 江苏农业学报, 2024, 40(3): 427-437.
|
|
|
[16] |
马中杰, 罗晨, 骆巍, 等. 基于改进YOLOv7-tiny的玉米种质资源雄穗检测方法[J]. 农业机械学报, 2024, 55(7): 290-297.
|
|
|
[17] |
党珊珊, 白明宇, 路扬, 等. 基于改进YOLOv10n的玉米叶片病害检测研究[J]. 内蒙古民族大学学报(自然科学版), 2025, 40(2): 69-76.
|
|
|
[18] |
李军, 房志远, 周昊星. 改进YOLOv10的天台光伏涉电区域行为人预警算法[J]. 计算机工程与应用, 2025, 61(5): 211-221.
|
|
|
[19] |
高立鹏, 周孟然, 胡锋, 等. 基于REIW-YOLOv10n的井下安全帽小目标检测算法[J/OL]. 煤炭科学技术, 1-13 [2025-08-08].
|
|
|
[20] |
李金瑞, 杜建军, 张宏鸣, 等. 基于轻量化MLCE-RTMDet的人工去雄后玉米雄穗检测算法[J]. 农业机械学报, 2024, 55(11): 184-192, 503.
|
|
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[1] | CHANG Jian, WANG Bingbing, YIN Long, LI Yanqing, LI Zhaoxin, LI Zhuang. The Lightweight Bee Pollination Recognition Model Based On YOLOv10n-CHL [J]. Smart Agriculture, 2025, 7(3): 185-198. |
[2] | XIE Jiyuan, ZHANG Dongyan, NIU Zhen, CHENG Tao, YUAN Feng, LIU Yaling. Accurate Detection of Tree Planting Locations in Inner Mongolia for The Three North Project Based on YOLOv10-MHSA [J]. Smart Agriculture, 2025, 7(3): 108-119. |
[3] | LI Zusheng, TANG Jishen, KUANG Yingchun. A Lightweight Model for Detecting Small Targets of Litchi Pests Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(2): 146-159. |
[4] | YANG Xinting, HU Huan, CHEN Xiao, LI Wenzheng, ZHOU Zijie, LI Wenyong. Lightweight Detection and Recognition Model for Small Target Pests on Sticky Traps in Multi-Source Scenarios [J]. Smart Agriculture, 2025, 7(1): 111-123. |
[5] | LUO Youlu, PAN Yonghao, XIA Shunxing, TAO Youzhi. Lightweight Apple Leaf Disease Detection Algorithm Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(5): 128-138. |
[6] | WENG Zhi, LIU Haixin, ZHENG Zhiqiang. CSD-YOLOv8s: Dense Sheep Small Target Detection Model Based on UAV Images [J]. Smart Agriculture, 2024, 6(4): 42-52. |
[7] | CHENG Yuxin, XUE Bowen, KONG Yuanyuan, YAO Dongliang, TIAN Long, WANG Xue, YAO Xia, ZHU Yan, CAO Weixing, CHENG Tao. Spectroscopic Detection of Rice Leaf Blast Infection at Different Leaf Positions at The Early Stages With Solar-Induced Chlorophyll Fluorescence [J]. Smart Agriculture, 2023, 5(3): 35-48. |
[8] | SHAO Mingyue, ZHANG Jianhua, FENG Quan, CHAI Xiujuan, ZHANG Ning, ZHANG Wenrong. Research Progress of Deep Learning in Detection and Recognition of Plant Leaf Diseases [J]. Smart Agriculture, 2022, 4(1): 29-46. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||