1 | 薛瑾. 农业保险保费增速跑赢财险业 “定制范儿”护航乡村振兴[EB/OL]. 中国证券报, (2021-02-05)[2022-1-31]. . | 2 | 赵展慧, 曲哲涵. 2021年全国农业保险保费规模达965亿元[N]. 人民日报, 2022-01-13(7). | 3 | 中国保险学会. 农业保险服务“三农”发展研究 [M]. 北京: 中国金融出版社, 2021: 496. | 4 | 中华人民共和国农业农村部金融司. 关于扩大三大粮食作物完全成本保险和种植收入保险实施范围的通知[EB/OL]. [2021-12-31]. . | 5 | 唐华俊. 农业遥感研究进展与展望[J]. 农学学报, 2018, 8(1): 161-171. | 5 | TANG H. Progress and prospect of agricultural remote sensing research[J]. Journal of Agriculture, 2018, 8(1): 161-171. | 6 | 王利民, 刘佳, 季富华. 中国农业遥感技术应用现状及发展趋势[J]. 中国农学通报, 2021, 37(25): 138-143. | 6 | WANG L, LIU J, JI F. Status quo and development trend of agriculture remote sensing technology application in China[J]. Chinese Agricultural Science Bulletin, 2021, 37(25): 138-143. | 7 | 吴文斌, 胡琼, 陆苗, 等. 农业土地系统遥感制图[M]. 北京: 科学出版社, 2020. | 8 | 黄波. 无人机技术在种植业保险中的应用研究[D]. 昆明: 昆明理工大学, 2019. | 8 | HUANG B. Research on the application of unmanned aerial vehicle technology in planting industry insurance[D]. Kunming: Kunming University of Science and Technology, 2019. | 9 | 张王菲, 陈尔学, 李增元, 等.雷达遥感农业应用综述[J]. 雷达学报, 2020, 9(3): 444-461. | 9 | ZHANG W, CHEN E, LI Z, et al. A review of applications of radar remote sensing in agriculture[J]. Journal of Radars, 2020, 9(3): 444-461. | 10 | TOWERY N G, EYTON J R, CHANGNON S, et al. Remote sensing of crop hail damage[R]. Illinois State: Illinois State Water Survey, 1975. | 11 | TOWERY N. Some applications of remote sensing of crop-hail damage in the insurance industry[R]. Circular 143/80 of the Illinois State Water Survey, Illinois Institute of Natural Resources: Urbana, IL, USA, 1980. | 12 | DE LEEUW J, VRIELING A, SHEE A, et al. The potential and uptake of remote sensing in insurance: A review[J]. Remote Sensing, 2014, 6(11): 10888-10912. | 13 | VROEGE W, DALHAUS T, FINGER R. Index insurances for grasslands: A review for Europe and North-America[J]. Agricultural Systems, 2019, 168: 101-111. | 14 | ARUMUGAM P, CHEMURA A, SCHAUBERGER B, et al. Remote sensing based yield estimation of rice (Oryza Sativa L.) using gradient boosted regression in India[J]. Remote Sensing, 2021, 13(12): ID 2379. | 15 | LI Z, ZHANG Z, ZHANG L. Improving regional wheat drought risk assessment for insurance application by integrating scenario-driven crop model, machine learning, and satellite data[J]. Agricultural Systems, 2021, 191: ID 103141. | 16 | MANAGO N, HONGO C, SOFUE Y, et al. Transplanting date estimation using Sentinel-1 satellite data for paddy rice damage assessment in Indonesia[J]. Agriculture, 2020, 10(12): 1-18. | 17 | 张兰. 农险“用腿理赔”或将终结[N]. 金融时报. 2013-10-21(005). | 18 | 郭清, 何飞. 空间信息技术在农业保险中的应用研究[J]. 地理信息世界, 2014, 21(1): 79-84. | 18 | GUO Q, HE F. Research on the application of spatial information technology in agricultural insurance[J]. Geographic Information World, 2014(1): 79-84。 | 19 | 李懿珈, 叶涛, 德庆卓嘎, 等. 基于遥感植被指数的西藏那曲地区畜牧业旱灾指数保险产品设计研究[J]. 农业现代化研究, 2018, 39(4): 680-688. | 19 | LI Y, YE T, DEQING Z, et al. Research on the design of animal husbandry drought index insurance product in Nagqu region of Tibet based on remote sensing vegetation index[J]. Agricultural Modernization Research, 2018. 39(4): 680-688. | 20 | 蒙继华, 付伟, 徐晋, 等. 遥感在种植业保险估损中的应用[J]. 遥感技术与应用, 2017(2): 238-246. | 20 | MENG J, FU W, XU J, et al. Application of remote sensing in planting industry insurance loss estimation[J]. Remote Sensing Technology and Application, 2017(2): 238-246 | 21 | 陈爱莲, 李家裕, 张圣军, 等. 卫星遥感估产技术在大豆区域收入保险中的应用[J]. 智慧农业(中英文), 2020, 2(3): 139-152. | 21 | CHEN A, LI J, ZHANG S, et al. Application of satellite remote sensing yield estimation technology in regional revenue protection crop insurance: A case of soybean[J]. Smart Agriculture, 2020, 2(3): 139-152. | 22 | 朱玉霞, 牛国芬, 陈爱莲, 等. 基于多源遥感数据的马铃薯收入保险应用研究[J]. 中国农业资源与区划, 2021, 42(10): 223-232. | 22 | ZHU Y, NIU G, CHEN A, et al. Application of potato income insurance based on multi-source remote sensing data[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(10): 223-232. | 23 | 赵思健, 张峭. 农业保险科技的现状、体系与展望[J]. 中国保险, 2018(7): 28-35. | 23 | ZHAO S, ZHANG Q. The current situation, system and prospect of agricultural insurance technology[J]. China Insurance, 2018(7): 28-35. | 24 | 赵思健, 张峭. 科技助推农业保险高质量发展研究[J]. 保险理论与实践, 2020(8): 7-19. | 24 | ZHAO S, ZHANG Q. Research on science and technology boosting the high-quality development of agricultural insurance[J]. Insurance Theory and Practice, 2020(8): 7-19. | 25 | 李乐, 潘耀忠, 王晓东, 等. 基于3S技术农业保险“精确承保与快速理赔”[J]. 卫星应用, 2016(3): 66-72. | 25 | LI L, PAN Y, WANG X, et al. Based on 3S technology agricultural insurance "accurate underwriting and fast claim settlement"[J]. Satellite Applications, 2016(3): 66-72. | 26 | 祁鑫. 遥感技术应用于农业保险业务模式创新[J]. 农技服务, 2017. 34(14): 171. | 27 | 徐志成, 韩志花, 王盾, 等. 内蒙古利用科技手段开展农业保险精准承保理赔试点工作[J]. 保险理论与实践, 2020(1): 1-6. | 27 | XU Z, HAN Z, WANG D, et al. Inner Mongolia uses scientific and technological means to carry out the pilot work of agricultural insurance precision underwriting and claims settlement[J]. Insurance Theory and Practice, 2020(1): 1-6. | 28 | 吴波, 杨娜, 戴维序, 等. 浅谈遥感技术在农业保险中的应用——以菏泽市单县玉米涝灾定损为例[J]. 农村实用技术, 2020(5): 37-39. | 28 | WU B, YANG N, DAI W, et al. A brief discussion on the application of remote sensing technology in agricultural insurance: Taking the damage determination of corn waterlogging disaster in Shanxian county, Heze city as an example[J]. Rural Practical Technology, 2020(5): 37-39. | 29 | 胡运伟, 冷伟, 陈淑敏, 等. 遥感在农险应用中的全流程解析——以湖北省孝感市孝南区中稻定标、验标项目为例[J]. 卫星应用, 2020(11): 30-34. | 29 | HU Y, LENG W, CHEN S, et al. Analysis of the whole process of remote sensing in agricultural insurance application: Taking the middle rice calibration and inspection project in Xiaonan district, Xiaogan city, Hubei province as an example[J]. Satellite Applications, 2020(11): 30-34. | 30 | 丁伟. 基于深度神经网络的耕地提取与作物识别方法研究[D]. 北京: 中国科学技术大学, 2021. | 30 | DING W. Research on land extraction and crop recognition method based on deep neural network[D]. Beijing: University of Science and Technology of China, 2021. | 31 | 吴延鹏. 无人机为太保农险保驾护航[J]. 农村.农业.农民(B版), 2016(4): 48. | 32 | 陈爱莲, 朱玉霞, 孙伟, 等. 遥感技术在农业保险病虫害定损中的应用——以双河农场稻瘟病为例[J]. 遥感信息, 2021, 36(6): 44-50. | 32 | CHEN A, ZHU Y, SUN W, et al. Application of remote sensing technology in the determination of pests and diseases in agricultural insurance: A case study of Rice Blast in Shuanghe Farm[J]. Remote Sensing Information, 2021, 36(6): 44-50. | 33 | 高雅琴, 陈林洁, 陈鑫磊, 等. “互联网+”时代下农业保险服务创新研究——以太平洋保险“e农险”在气象指数保险上的应用为例[G]. (2017)浙江保险科研成果选编, 2018. | 34 | 陈军, 武昊, 李松年. 全球地表覆盖领域服务计算的研究进展——以GlobeLand 30为例[J]. 测绘学报, 2017, 46(10): 1526-1533. | 34 | CHEN J, WU H, LI S. Research progress of global land domain service computing: Take GlobeLand 30 as an example[J]. Acta Geodaeticaet Cartographica Sinina, 2017, 46(10): 1526-1533. | 35 | 陈迪, 吴文斌, 陆苗, 等. 基于多源数据融合的地表覆盖数据重建研究进展综述[J]. 中国农业资源与区划, 2016, 37(9): 62-70. | 35 | CHEN D, WU W, LU M, et al. A review of the research progress of land cover data reconstruction based on multi-source data fusion[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(9): 62-70. | 36 | 倪玲, 舒宁. 遥感图像理解专家系统中面向对象的知识表示[J]. 武汉测绘科技大学学报, 1997(1): 34-36, 48. | 36 | NI L, SHU N. Object-oriented knowledge representation in remote sensing image understanding expert system[J]. Journal of Wuhan University of Surveying and Mapping Technology, 1997(1): 34-36, 48. | 37 | 张东梅. 基于多尺度分割的土地利用分类研究——以银川金凤区为例[D]. 南昌: 东华理工大学, 2017. | 37 | ZHANG D. The land use classification based on multi-scale segmentation: A case in Jinfeng district, Yinchuan city[D]. Nanchang: East China University of Technology, 2017. | 38 | 赵士肄, 闫金凤, 杜佳雪. 基于面向对象结合随机森林模型的Sentinel-2A影像耕地信息提取[J/OL]. 河南理工大学学报(自然科学版), [2021-03-29]. . | 38 | ZHAO S, YAN J, DU J. Sentinel-2A image cultivated land information extraction based on object-oriented and random forest model[J/OL]. Journal of Henan Polytechnic University(Natural Science), [2021-03-29]. . | 39 | 罗建松, 赵妮妮, 李姝蕊. 基于Landsat-8数据的快速变化检测研究[J]. 测绘与空间地理信息, 2020, 43(12): 116-118, 121. | 39 | LUO J, ZHAO N, LI S. Research on the quick change detection based on Landsat-8 Satellite images[J]. Surveying and Geospatial Information, 2020, 43(12): 116-118, 121. | 40 | HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. | 41 | 刘大伟, 韩玲, 韩晓勇. 基于深度学习的高分辨率遥感影像分类研究[J]. 光学学报, 2016, 36(4): 306-314. | 41 | LIU D, HAN L, HAN X. High spatial resolution remote sensing image classification based on deep learning[J]. Acta Optica Sinica, 2016, 36(4): 306-314. | 42 | 冯丽英. 基于深度学习技术的高分辨率遥感影像建设用地信息提取研究[D]. 杭州: 浙江大学, 2017. | 42 | FENG L. Research on construction land information extraction from high resolution sensing images with deep learning technology[D]. Hangzhou: Zhejiang University, 2017. | 43 | 王斌, 范冬林. 深度学习在遥感影像分类与识别中的研究进展综述[J]. 测绘通报, 2019(2): 99-102, 136. | 43 | WANG B, FAN D. Research progress of deep learning in classification and recognition of remote sensing images[J]. Surveying and Mapping Bulletin, 2019(2): 99-102, 136. | 44 | 董金玮, 李世卫, 曾也鲁, 等. 遥感云计算与科学分析: 应用与实践[M]. 北京: 科学出版社, 2020. | 45 | 杨颖频, 吴志峰, 骆剑承, 等. 时空协同的地块尺度作物分布遥感提取[J]. 农业工程学报, 2021, 37(7): 166-174. | 45 | YANG Y, WU Z, LUO J, et al. Parcel-based crop distribution extraction using the spatiotemporal collaboration of remote sensing data[J]. Transactions of the CSAE, 2021, 37(7): 166-174. | 46 | 刘斌, 史云, 吴文斌, 等. 基于无人机遥感可见光影像的农作物分类[J]. 中国农业资源与区划, 2019, 40(8): 55-63. | 46 | LIU B, SHI Y, WU W, et al. Crop classification based on uav remote sensing images[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2019, 40(8): 55-63. | 47 | 吴志峰, 骆剑承, 孙营伟, 等. 时空协同的精准农业遥感研究[J]. 地球信息科学学报, 2020, 22(4): 731-742. | 47 | WU Z, LUO J, SUN Y, et al. Research on precision agricultural based on the spatial-temporal remote sensing collaboration[J]. Journal of Geo-information Science, 2020, 22(4): 731-742. | 48 | 杨闫君, 占玉林, 田庆久, 等. 基于GF-1/WFVNDVI时间序列数据的作物分类[J]. 农业工程学报, 2015. 31(24): 155-161. | 48 | YANG Y, ZHAN Y, TIAN Q, et al. Crop classification based on GF-1/WFV NDVI time series[J]. Transactions of the CSAE, 2015, 31(24): 155-161. | 49 | 杜保佳, 张晶, 王宗明, 等. 应用Sentinel-2A NDVI时间序列和面向对象决策树方法的农作物分类[J]. 地球信息科学学报, 2019, 21(5): 740-751. | 49 | DU B, ZHANG J, WANG Z, et al. Crop mapping based on Sentinel-2A NDVI time series using object-oriented classification and decision tree model[J]. Journal of Geo-information Science, 2019, 21(5): 740-751. | 50 | 孙晨红, 杨贵军, 董燕生,等. 旱冻双重胁迫下的冬小麦幼苗长势遥感监测研究[J]. 麦类作物学报, 2014, 34(5): 635-641. | 50 | SUN C, YANG G, DONG Y, et al. Remote sensing monitoring on seedling conditions of winter wheat growth under double stress of dry and freezing injury[J]. Journal of Triticeae Crops, 2014, 34(5): 635-641. | 51 | 董燕生, 陈洪萍, 王慧芳, 等. 基于多时相环境减灾卫星数据的冬小麦冻害评估[J]. 农业工程学报, 2012, 28(20): 172-179, 295. | 51 | DONG Y, CHEN H, WANG H, et al. Assessing freeze injury to winter wheat with multi-temporal HJ-1 satellite imagery[J]. Transactions of the CSAE, 2012, 28(20): 172-179, 295. | 52 | 甘平, 董燕生, 孙林, 等. 基于无人机载LiDAR数据的玉米涝灾灾情评估[J]. 中国农业科学, 2017, 50(15): 2983-2992. | 52 | GAN P, DONG Y, SUN L, et al. Evaluation of maize waterlogging disaster using UAV LiDAR data[J]. Scientia Agricultura Sinica, 2017, 50(15): 2983-2992. | 53 | 郭安廷. 基于成像遥感的小麦条锈病监测方法研究[D]. 北京: 中国科学院大学(中国科学院空天信息创新研究院), 2021. | 53 | GUO A. Research on the methods of wheat yellow rust monitoring based on imaging remote sensing[D]. Beijing: Aerospace Information Research Institute, Chinese Academy of Sciences, 2021. | 54 | 王凡. 基于小波变换的玉米大斑病害高光谱监测研究[D]. 太谷: 山西农业大学, 2019. | 54 | WANG F. Hyperspectral monitoring of maize leaf blight disease based on wavelet transform[D]. Taigu: Shanxi Agricultural University, 2019. | 55 | 黄青, 李丹丹, 陈仲新, 等. 基于MODIS数据的冬小麦种植面积快速提取与长势监测[J]. 农业机械学报, 2012(7): 163-167. | 55 | HUANG Q, LI D, CHEN Z, et al. Rapid extraction and growth monitoring of winter wheat planting area based on MODIS data[J]. Transactions of the CSAM, 2012(7): 163-167. | 56 | 杜鑫, 蒙继华, 吴炳方. 作物生物量遥感估算研究进展[J]. 光谱学与光谱分析, 2010, 30(11): 3098-3102. | 56 | DU X, MENG J, WU B. Overview on monitoring crop biomass with remote sensing[J]. Spectroscopy and Spectral Analysis, 2010, 30(11): 3098-3102. | 57 | 黄健熙, 黄海, 马鸿元, 等. 遥感与作物生长模型数据同化应用综述[J]. 农业工程学报, 2018, 34(21): 144-156. | 57 | HUANG J, HUAN H, MA H, et al. Review on data assimilation of remote sensing and crop growth models[J]. Transactions of the CSAE, 2018, 34(21): 144-156. | 58 | 王丽媛. 遥感数据与作物模型同化的冬小麦估产研究[D]. 杭州: 浙江大学, 2018. | 58 | WANG L. Estimating winter wheat yield by assimilation of remote sensing data into crop models[D]. Hangzhou: Zhejiang University, 2018. | 59 | 程志强, 蒙继华. 作物单产估算模型研究进展与展望[J]. 中国生态农业学报, 2015, 23(4): 402-415. | 59 | CHENG Z, MENG J. Research advances and prospectives on crop yield estimation models[J]. Chinese Journal of Ecological Agriculture, 2015, 23(4): 402-415. | 60 | 武伟, 范莉, 李茂芬, 等. 不同时间尺度太阳辐射数据对作物生长模型的影响(英文)[J]. 农业工程学报, 2012, 28(3): 123-128. | 60 | WU W, FAN L, LI M, et al. Sensitivity analysis of crop growth models to multi-temporal scale solar radiation[J]. Transactions of the CSAE, 2012, 28(3): 123-128. | 61 | 卢必慧, 于堃. 遥感信息与作物生长模型同化应用的研究进展[J]. 江苏农业科学, 2018, 46(10): 9-13. | 61 | LU B, YU K. Research progress on assimilation aplication of remote sensing information and crop growth model[J]. Jiangsu Agricultural Science, 2018, 46(10): 9-13. | 62 | 王莺, 巩垠熙. 遥感光谱技术在农作物估产中的应用研究进展[J]. 中国农学通报, 2019, 35(3): 69-75. | 62 | WANG Y, GONG Y. Spectral remote sensing technology applied in crop yield estimation: Research progress[J]. Chinese Agricultural Science Bulletin, 2019, 35(3): 69-75. | 63 | HAMMER M. Reengineering work: Don't automate, obliterate[J]. Harvard Business Review, 1990, 68(4): 104. |
|