Smart Agriculture ›› 2023, Vol. 5 ›› Issue (1): 34-43.doi: 10.12133/j.smartag.SA202302001
• Topic--Smart Supply Chain of Agricultural Products • Previous Articles Next Articles
ZUO Min(), HU Tianyu, DONG Wei(
), ZHANG Kexin, ZHANG Qingchuan
Received:
2023-02-26
Online:
2023-03-30
Foundation items:
About author:
ZUO Min, E-mail:zuomin@btbu.edu.cn
corresponding author:
DONG Wei, E-mail:dongwei2019@btbu.edu.cn
CLC Number:
ZUO Min, HU Tianyu, DONG Wei, ZHANG Kexin, ZHANG Qingchuan. Forecast and Analysis of Agricultural Products Logistics Demand Based on Informer Neural Network: Take the Central China Aera as An Example[J]. Smart Agriculture, 2023, 5(1): 34-43.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202302001
Table 1
Sample data sets of indicators affecting the logistics demand of agricultural products in three provinces of Central China
年份 | 省份 | G1/亿元 | G2/元 | G3/元 | G4/亿元 | G5/亿元 | G6/亿元 | G7/千公顷 | G8/万吨公里 | G9/公斤 | G10/万吨 | G11/千公顷 | G12/万吨 | G13/万公里 | G14/万公里 | S/万吨 | X/万 | Y/千克 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 河南 | 44824.9 | 20170 | 13730 | 4139.3 | 20940.3 | 19745.3 | 14732.53 | 6524.25 | 683.49 | 11271.39 | 16670.25 | 230114 | 0.54 | 26.78 | 3215.1 | 9829 | 327.1 |
湖南 | 33828.1 | 23103 | 17160 | 2998.4 | 13459.8 | 17369.9 | 8321.97 | 3073.6 | 449.29 | 5432.21 | 10248.41 | 225551 | 0.47 | 23.97 | 2562.3 | 6633 | 386.3 | |
湖北 | 37235 | 23757 | 16938 | 3529 | 15713.9 | 17992.2 | 7956.14 | 2846.13 | 482.93 | 5374.29 | 9796.19 | 188107 | 0.42 | 26.95 | 2030.4 | 5904 | 343.9 | |
2018 | 河南 | 49935.9 | 21964 | 15169 | 4311.1 | 22038.6 | 23586.2 | 14783.35 | 6648.91 | 693.9 | 11369.49 | 16776.68 | 259884 | 0.54 | 26.86 | 3231.4 | 9864 | 327.6 |
湖南 | 36329.7 | 25241 | 18808 | 3084.2 | 13904.1 | 19341.4 | 8111.09 | 3022.90 | 439.41 | 5424.7 | 10095.08 | 229957 | 0.51 | 24.01 | 2483.5 | 6635 | 374.3 | |
湖北 | 42022 | 25815 | 19538 | 3548.2 | 17573.9 | 20899.9 | 7952.9 | 2839.47 | 480.49 | 5414.61 | 9807.57 | 204307 | 0.43 | 27.50 | 2015.3 | 5917 | 340.6 | |
2019 | 河南 | 53717.8 | 23903 | 16332 | 4635.7 | 23035.6 | 26046.5 | 14713.98 | 6695.36 | 695.81 | 11447.8 | 16914.99 | 219024 | 0.65 | 26.98 | 3464.4 | 9901 | 349.9 |
湖南 | 39894.1 | 27680 | 20479 | 3647.2 | 15401.7 | 20845.2 | 8122.79 | 2974.84 | 430.6 | 4730.02 | 10581.25 | 189740 | 0.56 | 24.06 | 2580.97 | 6640 | 388.7 | |
湖北 | 45429 | 28319 | 21567 | 3809.4 | 18723 | 22896.5 | 7815.89 | 2724.98 | 460.15 | 5338.46 | 10271.75 | 188133 | 0.52 | 28.9 | 2034.74 | 5927 | 343.3 | |
2020 | 河南 | 54259.4 | 24810 | 16143 | 5354 | 22220.9 | 26684.5 | 14687.99 | 6825.8 | 688.02 | 11584.08 | 16737.73 | 219939 | 0.65 | 27.03 | 3777.58 | 9941 | 380 |
湖南 | 41542.6 | 29380 | 20998 | 4240.7 | 15949.2 | 21352.7 | 8400.13 | 3015.12 | 453.91 | 4440.67 | 10409.77 | 200878 | 0.56 | 24.11 | 2700.53 | 6645 | 406.4 | |
湖北 | 43004.5 | 27881 | 19246 | 4133.2 | 15933.8 | 22937.6 | 7974.39 | 2727.43 | 467.35 | 5339.24 | 9753.15 | 160422 | 0.52 | 282.96 | 2205.51 | 5745 | 383.9 | |
2021 | 河南 | 58887.4 | 26811 | 18391 | 5620.8 | 24331.6 | 28934.9 | 14705.13 | 6544.17 | 660.23 | 11282.39 | 16713.72 | 255551 | 0.65 | 27.16 | 4048.1 | 9883 | 409.6 |
湖南 | 46063.1 | 31993 | 22798 | 4322.9 | 18126.1 | 23614.1 | 8504.26 | 3074.36 | 463.46 | 4701.37 | 10552.7 | 224465 | 0.56 | 24.19 | 2836.86 | 6622 | 428.4 | |
湖北 | 50012.9 | 30829 | 23846 | 4661.7 | 18952.9 | 26398.4 | 8109.24 | 2764.33 | 477.64 | 5589.54 | 9949.02 | 214762 | 0.52 | 29.69 | 2421.78 | 5830 | 415.4 |
Table 2
Experimental environmental parameters of agricultural products logistics demand forecast in Central China
环境类型 | 环境名称 | 参数 |
---|---|---|
操作系统 | Windows 10 | 64 bit |
硬件信息 | CPU | Intel(R) Core(TM) i5-8265U CPU @ 1.60 GHz (8 CPUs)~1.8 GHz |
GPU | Radeon 540X Series | |
RAM | 16 GB | |
软件工具 | Python 3.7 | Numpy 1.21.6 |
Scikit_Learn 1.0.2 | ||
Pandas 1.3.5 | ||
Torch 1.12.1 | ||
Matplotlib 3.5.3 |
Table 3
Training and test errors of neural network
折叠数量 | 训练错误 | 测试错误 | ||
---|---|---|---|---|
绝对误差 | 误差百分比/% | 绝对误差 | 误差百分比/% | |
Informer 1倍 | 77.21 | 4.61 | 85.96 | 5.17 |
Informer 2倍 | 21.49 | 2.17 | 31.19 | 2.34 |
Informer 3倍 | 20.87 | 2.23 | 33.47 | 2.53 |
Informer 4倍 | 32.94 | 3.54 | 37.26 | 3.59 |
Informer 5倍 | 30.37 | 3.43 | 36.61 | 3.36 |
Informer平均值 | 36.58 | 3.07 | 44.89 | 3.39 |
LSTM 1倍 | 85.37 | 6.31 | 81.96 | 5.97 |
LSTM 2倍 | 31.23 | 4.21 | 38.23 | 3.64 |
LSTM 3倍 | 22.87 | 3.03 | 35.57 | 3.83 |
LSTM 4倍 | 34.74 | 3.84 | 28.31 | 2.89 |
LSTM 5倍 | 28.37 | 3.75 | 33.18 | 3.16 |
LSTM平均值 | 40.52 | 4.37 | 43.45 | 4.43 |
Transformer 1倍 | 81.07 | 4.61 | 82.15 | 5.17 |
Transformer 2倍 | 39.61 | 3.77 | 47.59 | 2.34 |
Transformer 3倍 | 27.53 | 2.03 | 38.26 | 3.47 |
Transformer 4倍 | 37.81 | 3.54 | 35.81 | 3.19 |
Transformer 5倍 | 33.41 | 3.43 | 31.73 | 3.06 |
Transformer平均值 | 39.61 | 3.07 | 47.11 | 4.35 |
Table 4
Ablation experiment results to verify whether the selection of 16 indicators was scientific based on the data of Henan province in 2021
序号 | G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 | G9 | G10 | G11 | G12 | G13 | G14 | X | Y | 绝对误差/% |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 3.39 |
2 | × | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 3.52 |
3 | √ | × | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 3.58 |
4 | √ | √ | × | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 3.81 |
5 | √ | √ | √ | × | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 3.77 |
6 | √ | √ | √ | √ | × | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 3.86 |
7 | √ | √ | √ | √ | √ | × | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 3.46 |
8 | √ | √ | √ | √ | √ | √ | × | √ | √ | √ | √ | √ | √ | √ | √ | √ | 4.07 |
9 | √ | √ | √ | √ | √ | √ | √ | × | √ | √ | √ | √ | √ | √ | √ | √ | 3.44 |
10 | √ | √ | √ | √ | √ | √ | √ | √ | × | √ | √ | √ | √ | √ | √ | √ | 3.47 |
11 | √ | √ | √ | √ | √ | √ | √ | √ | √ | × | √ | √ | √ | √ | √ | √ | 3.62 |
12 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | × | √ | √ | √ | √ | √ | 3.53 |
13 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | × | √ | √ | √ | √ | 3.74 |
14 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | × | √ | √ | √ | 3.48 |
15 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | × | √ | √ | 3.51 |
16 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | × | √ | 3.43 |
17 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | × | 3.52 |
1 | 姚冠新, 杨妍, 徐静, 等. 新冠疫情背景下农产品物流需求预测——以兴化市为例[J]. 物流科技, 2021, 44(9): 91-95. |
YAO G X, YANG Y, XU J, et al. Forecasting of logistics demand for agricultural products under the background of COVID-19—A case study of Xinghua city[J]. Logistics sci-tech, 2021, 44(9): 91-95. | |
2 | 张继良. 基于组合模型的山东生鲜农产品物流需求预测[D]. 济南: 山东大学, 2021. |
ZHANG J L. Logistics demand forecast of fresh agricultural products in Shandong province based on combination model[D]. Jinan: Shandong University, 2021. | |
3 | 王晓平, 闫飞. 基于GA-BP模型的北京城镇农产品冷链物流需求预测[J]. 数学的实践与认识, 2019, 49(21): 17-27. |
WANG X P, YAN F. Prediction of cold chain logistics demand for agricultural products in Beijing based on GA-BP model[J]. Mathematics in practice and theory, 2019, 49(21): 17-27. | |
4 | SHYLA M K, SHIVA K K, KUMAR D R. Image steganography using genetic algorithm for cover image selection and embedding[J]. Soft computing letters, 2021, 3: ID 100021. |
5 | 皇甫红姣. 绵阳市生鲜农产品冷链物流需求预测研究[D]. 绵阳: 西南科技大学, 2021. |
HUANGFU H J. Research on cold chain logistics demand forecast of fresh agricultural products in Mianyang city[D]. Mianyang: Southwest University of Science and Technology, 2021. | |
6 | 刘文博. 辽宁省生鲜农产品冷链物流需求预测研究[J]. 全国流通经济, 2022(4): 11-13. |
LIU W B. Research on demand forecast of cold chain logistics of fresh agricultural products in Liaoning province[J]. China circulation economy, 2022(4): 11-13. | |
7 | WANG M, LI X. Demand forecasting of agricultural cold chain logistics based on metabolic GM (1,1) model[J]. IOP conference series: Earth and environmental science, 2021, 831(1): ID 012018. |
8 | HUANG L, XIE G, ZHAO W, et al. Regional logistics demand forecasting: A BP neural network approach[J]. Complex & Intelligent Systems, 2021: 1-16. |
9 | 徐晓燕, 杨慧敏, 吕修凯, 等. 基于山东省不同模型的物流需求预测比较研究[J]. 包装工程, 2022, 43(23): 207-215. |
XU X Y, YANG H M, LYU X K, et al. Comparative research on forecast of logistics demand in Shandong Province based on different models[J]. Packaging engineering, 2022, 43(23): 207-215. | |
10 | VAN DER LAAN E, VAN DALEN J, ROHRMOSER M, et al. Demand forecasting and order planning for humanitarian logistics: An empirical assessment[J]. Journal of operations management, 2016, 45: 114-122. |
11 | LU B, PARK N. A study on model of regional logistics requirements prediction[J]. Journal of Korean navigation and port research, 2012, 36: 553-559. |
12 | BAISARIYEV M, BAKYTZHANULY A, SERIK Y, et al. Demand forecasting methods for spare parts logistics for aviation: A real-world implementation of the Bootstrap method[J]. Procedia manufacturing, 2021, 55: 500-506. |
13 | ZENG M L, LIU R M, GAO M, et al. Demand forecasting for rural E-commerce logistics: A gray prediction model based on weakening buffer operator[J]. 2022, 2022: ID 3395757. |
14 | ANSHUKA A, CHANDRA R, BUZACOTT A J V, et al. Spatio temporal hydrological extreme forecasting framework using LSTM deep learning model[J]. Stochastic environmental research and risk assessment, 2022, 36(10): 3467-3485. |
15 | LIU J J, YUAN X, ZENG J H, et al. Ensemble streamflow forecasting over a cascade reservoir catchment with integrated hydrometeorological modeling and machine learning[J]. Hydrology and earth system sciences, 2021, 26(2): 265-278. |
16 | XU C W, WANG Y Z, FU H, et al. Comprehensive analysis for long-term hydrological simulation by deep learning techniques and remote sensing[J]. Frontiers in earth science, 2022, 10: ID 875145. |
17 | DU S D, LI T R, YANG Y, et al. Deep air quality forecasting using hybrid deep learning framework[J/OL]. arXiv: , 2018. |
18 | JANARTHANAN R, PARTHEEBAN P, SOMASUNDARAM K, et al. A deep learning approach for prediction of air quality index in a metropolitan city[J]. Sustainable cities and society, 2021, 67: ID 102720. |
19 | PENG J H, CAO H L, ALI Z, et al. Intelligent reflecting surface-assisted interference mitigation with deep reinforcement learning for radio astronomy[J]. IEEE antennas and wireless propagation letters, 2022, 21(9): 1757-1761. |
20 | SEDAGHAT N, ROMANIELLO M, CARRICK J E, et al. Machines learn to infer stellar parameters just by looking at a large number of spectra[J]. Monthly notices of the Royal Astronomical Society, 2021, 501(4): 6026-6041. |
21 | LIU H L, LIN P, ZHENG W P, et al. A global eddy-resolving ocean forecast system in China-LICOM Forecast System (LFS)[J]. Journal of operational oceanography, 2021, 16(1): 15-27. |
22 | ZHU X M, ZU Z Q, REN S H, et al. Improvements in the regional South China Sea operational oceanography forecasting system (SCSOFSv2)[J]. Geoscientific model development, 2022, 15(3): 995-1015. |
23 | 综合百科[EB/OL]. (2020-10-29)[2023-01-30]. . |
24 | ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[J/OL]. arXiv:2012.07436 [cs.LG], 2020. |
25 | 宋勇, 蔡志平. 大数据环境下基于信息论的入侵检测数据归一化方法[J]. 武汉大学学报(理学版), 2018, 64(2): 121-126. |
SONG Y, CAI Z P. Normalized method of intrusion detection data based on information theory in big data environment[J]. Journal of Wuhan university (natural science edition), 2018, 64(2): 121-126. |
[1] | LUO Youlu, PAN Yonghao, XIA Shunxing, TAO Youzhi. Lightweight Apple Leaf Disease Detection Algorithm Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(5): 128-138. |
[2] | LIU Yi, ZHANG Yanjun. ReluformerN: Lightweight High-Low Frequency Enhanced for Hyperspectral Agricultural Lancover Classification [J]. Smart Agriculture, 2024, 6(5): 74-87. |
[3] | NIAN Yue, ZHAO Kaixuan, JI Jiangtao. Cow Hoof Slippage Detecting Method Based on Enhanced DeepLabCut Model [J]. Smart Agriculture, 2024, 6(5): 153-163. |
[4] | ZHANG Yanqi, ZHOU Shuo, ZHANG Ning, CHAI Xiujuan, SUN Tan. A Regional Farming Pig Counting System Based on Improved Instance Segmentation Algorithm [J]. Smart Agriculture, 2024, 6(4): 53-63. |
[5] | XUE Bing, SUN Chuanheng, LIU Shuangyin, LUO Na, LI Jinhui. Price Game Model and Competitive Strategy of Agricultural Products Retail Market in the Context of Blockchain [J]. Smart Agriculture, 2024, 6(4): 160-173. |
[6] | WENG Zhi, FAN Qi, ZHENG Zhiqiang. Automatic Measurement Method of Beef Cattle Body Size Based on Multimodal Image Information and Improved Instance Segmentation Network [J]. Smart Agriculture, 2024, 6(4): 64-75. |
[7] | YANG Lin, LIU Shuangyin, XU Longqin, HE Min, SHENG Qingfeng, HAN Jiawei. Dynamic Prediction Method for Carbon Emissions of Cold Chain Distribution Vehicle under Multi-Source Information Fusion [J]. Smart Agriculture, 2024, 6(4): 138-148. |
[8] | HOU Yiting, RAO Yuan, SONG He, NIE Zhenjun, WANG Tan, HE Haoxu. A Rapid Detection Method for Wheat Seedling Leaf Number in Complex Field Scenarios Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(4): 128-137. |
[9] | WANG Yuxiao, SHI Yuanyuan, CHEN Zhaoda, WU Zhenfang, CAI Gengyuan, ZHANG Sumin, YIN Ling. Pig Back Transformer: Automatic 3D Pig Body Measurement Model [J]. Smart Agriculture, 2024, 6(4): 76-90. |
[10] | LI Hao, DU Yuqiu, XIAO Xingzhu, CHEN Yanxi. Remote Sensing Identification Method of Cultivated Land at Hill County of Sichuan Basin Based on Deep Learning [J]. Smart Agriculture, 2024, 6(3): 34-45. |
[11] | NIE Ganggang, RAO Honghui, LI Zefeng, LIU Muhua. Severity Grading Model for Camellia Oleifera Anthracnose Infection Based on Improved YOLACT [J]. Smart Agriculture, 2024, 6(3): 138-147. |
[12] | ZHANG Jing, ZHAO Zexuan, ZHAO Yanru, BU Hongchao, WU Xingyu. Oilseed Rape Sclerotinia in Hyperspectral Images Segmentation Method Based on Bi-GRU and Spatial-Spectral Information Fusion [J]. Smart Agriculture, 2024, 6(2): 40-48. |
[13] | PANG Chunhui, CHEN Peng, XIA Yi, ZHANG Jun, WANG Bing, ZOU Yan, CHEN Tianjiao, KANG Chenrui, LIANG Dong. HI-FPN: A Hierarchical Interactive Feature Pyramid Network for Accurate Wheat Lodging Localization Across Multiple Growth Periods [J]. Smart Agriculture, 2024, 6(2): 128-139. |
[14] | ZHANG Yuyu, BING Shuying, JI Yuanhao, YAN Beibei, XU Jinpu. Grading Method of Fresh Cut Rose Flowers Based on Improved YOLOv8s [J]. Smart Agriculture, 2024, 6(2): 118-127. |
[15] | ZHANG Jianhua, YAO Qiong, ZHOU Guomin, WU Wendi, XIU Xiaojie, WANG Jian. Intelligent Identification of Crop Agronomic Traits and Morphological Structure Phenotypes: A Review [J]. Smart Agriculture, 2024, 6(2): 14-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||