Smart Agriculture ›› 2019, Vol. 1 ›› Issue (4): 1-11.doi: 10.12133/j.smartag.2019.1.4.201905-SA005
• Overview Article • Next Articles
Huang Wenjiang1,2, Shi Yue1,2, Dong Yingying1, Ye Huichun1, Wu Mingquan2, Cui Bei1, Liu Linyi1,2,3
Received:
2019-05-19
Revised:
2019-10-15
Online:
2019-10-30
Published:
2019-12-24
corresponding author:
Wenjiang Huang
CLC Number:
Huang Wenjiang, Shi Yue, Dong Yingying, Ye Huichun, Wu Mingquan, Cui Bei, Liu Linyi. Progress and prospects of crop diseases and pests monitoring by remote sensing[J]. Smart Agriculture, 2019, 1(4): 1-11.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.smartag.net.cn/EN/10.12133/j.smartag.2019.1.4.201905-SA005
Table 1
The first derivative features, continuum features and vegetation indices used in discrimination of pest and disease
类别 | 指标 | 名称 | 定义 | 文献 |
---|---|---|---|---|
微 分 光 谱 | Db | 蓝波段一阶微分最大值(蓝边) | 蓝边一般分布在490~539nm波段范围 | [ |
λb | Db的波长 | λb表征了蓝边 Db处的波长 | [ | |
SDb | 蓝波段一阶微分光谱的和 | 表征了蓝边部分35个波段一阶微分光谱的和 | [ | |
Dy | 黄波段一阶微分最大值(黄边) | 黄边一般分布在550~582nm波段范围 | [ | |
λy | Dy的波长 | λy表征了黄边Dy处的波长 | [ | |
SDy | 黄波段一阶微分光谱的和 | 表征了黄边部分35个波段一阶微分光谱的和 | [ | |
Dr | 红波段一阶微分最大值(红边) | 红边一般分布在670~737nm波段范围. | [ | |
λr | Dr的波长 | λr表征了红边Dr处的波长 | [ | |
SDr | 红波段一阶微分光谱的和 | 表征了红边部分35个波段一阶微分光谱的和 | [ | |
连 续 统 特 征 | DEP550-750 | 光谱深度 | 波段范围550~750nm | [ |
DEP920-1120 | 波段范围920~1120nm | [ | ||
DEP1070-1320 | 波段范围1070~1320nm | [ | ||
WID550-750 | 半波段宽度DEP | 波段范围550~750nm | [ | |
WID920-1120 | 波段范围920~1120nm | [ | ||
WID1070-1320 | 波段范围1070~1320nm | [ | ||
AREA550-750 | DEP和WID组成区域的面积 | 波段范围550~750nm | [ | |
AREA920-1120 | 波段范围920~1120nm | [ | ||
AREA1070-1320 | 波段范围1070~1320nm | [ | ||
植 被 指 数 | GI | 绿度指数(Greenness Index) | R 554/R 677 | [ |
NDVI | 归一化植被指数(Normalized Difference Vegetation Index) | (R NIR-R R)/(R NIR+R R) | [ | |
TVI | 三角植被指数(Triangular Vegetation Index) | 0.5*[120*(R 750-R 550)-200*(R 670-R 550)] | [ | |
PRI | 光化学反射指数(Photochemical Reflectance Index) | (R 570-R 531)/(R 570+R 531) | [ | |
CARI | 叶绿素吸收率指数(Chlorophyll Absorption Ratio Index) | (|(a670+R 670+b)|/(a2+1)1/2)*(R 700/R 670) | [ | |
a=(R 700-R 550)/150,b=R 550-(a*550) | ||||
MCARI | 修正的叶绿素吸收率指数(Modified Chlorophyll Absorption Reflectance Index) | [(R 700-R 670)-0.2*(R 700-R 550)]*R 700/R 670 | [ | |
CIRed-edge | 红边叶绿素指数(Red-edge Chlorophyll Index) | (R NIR/R E)-1 | [ | |
SIPI | 结构无关色素指数(Structural Independent Pigment Index) | (R 800-R 445)/(R 800+R 680) | [ | |
PSRI | 植物衰老反射指数(Plant Senescence Reflectance Index) | (R 678-R 550)/R 750 | [ | |
NPCI | 归一化叶绿素比值指数(Normalized Pigment Chlorophyll Ratio Index) | (R 680-R 430)/(R 680+R 430) | [ | |
OSAVI | 优化的土壤调节植被指数(Optimized Soil Adjusted Vegetation Index) | (R NIR-R R)/(R NIR+R R+0.16) | [ | |
SR | 简单比值指数(Simple Ratio Index) | R 1600/R 819 | [ | |
WI | 水份指数(Water Index) | R 900/R 970 | [ | |
NDWI | 归一化插值水份指数(Normalized Difference Water Index) | (R 860-R 1240)/(R 860+R 1240) | [ | |
AI | 蚜虫指数(Aphid Index) | (R 740-R 887)/(R 691-R 698) | [ | |
GNDVI | 绿波段归一化植被指数(Green Normalized Difference Vegetation Index) | (R NIR-R G)/(R NIR+R G) | [ | |
DSSI2 | 损伤敏感光谱指数2(Damage Sensitive Spectral Index 2) | (R 747-R 901-R 537-R 572)/(R 747-R 901+R 537-R 572) | [ | |
HI | 健康指数(Healthy Index) | (R 534-R 698)/(R 534+R 698)-0.5R 704 | [ | |
RTVI | 定量三角植被指数(Ration Triangular Vegetation Index) | [55(R 750-R 570)-90(R 680-R 570)]/[90(R 750+R 570)] | [ |
Table 2
Remote sensing monitoring characteristics and application cases of multispectral diseases and pests based on aerospace platform
观测尺度 | 常用设备 | 载荷平台 | 特点及应用 | 病虫害类型 | 参考文献 |
---|---|---|---|---|---|
农田地块尺度监测 | 成像多光谱仪,热红外成像仪 | 多旋翼无人机,固定翼无人机,传统大飞机 | 观测范围较大,成本较高,精度较高,以航空飞行器为平台,输出田间病害处方图。 | 小麦条锈病 | [ |
小麦白粉病 | [ | ||||
小麦蚜虫 | [ | ||||
小麦黄斑病 | [ | ||||
葡萄黄化病 | [ | ||||
水稻稻飞虱 | [ | ||||
水稻稻瘟病 | [ | ||||
芹菜菌核病 | [ | ||||
番茄潜叶蛾 | [ | ||||
番茄细菌性叶斑病 | [ | ||||
甜菜褐斑病 | [ | ||||
区域尺度监测 | 多光谱卫星(Landsat,GF,Sentinel),高光谱卫星(Hyperion),热红外卫星(Landsat,Aster,HJ) | 卫星遥感平台 | 观测范围极大,成本低,以遥感卫星为数据源,作为大尺度检测和预报提供依据。 | 小麦条锈病 | [ |
小麦白粉病 | [ | ||||
小麦蚜虫 | [ | ||||
水稻稻飞虱 | [ | ||||
水稻矮缩病 | [ | ||||
棉花根腐病 | [ |
1 | Strange R N , Scott P R . Plant disease: A threat to global food security[J]. Annual Review of Phytopathology, 2005, 43(1): 83-116. |
2 | 黄文江 . 作物病害遥感监测机理与应用[M]. 北京: 农业科技出版社, 2009. |
3 | Deutsch C A , Tewksbury J J , Tigchelaar M , et al . Increase in crop losses to insect pests in a warming climate[J]. Science, 2018, 361(6405): 916-919. |
4 | 陶凤英, 潘云鹤, 栾金波 . 农作物病虫害专业化统防统治的现状与发展对策[J]. 内蒙古农业科技, 2011(2): 96-97. |
Tao F , Pang Y , Luan J . Development status of professional control of crop diseases and insect pests and countermeasures [J]. Inner Mongolia Agricultural Science and Technology, 2011(2): 96-97. | |
5 | Piao S , Ciais P , Huang Y , et al . The impacts of climate change on water resources and agriculture in China[J]. Nature, 2010, 467(7311): 43-51. |
6 | 黄文江, 张竞成, 罗菊花, 等 . 作物病虫害遥感监测与预测[M]. 北京: 科学出版社, 2015. |
7 | Huang W , Yang Q , Pu R , et al . Estimation of nitrogen vertical distribution by bi-directional canopy reflectance in winter wheat[J]. Sensors, 2014, 14(11): 20347-20359. |
8 | Khanal S , Fulton J , Shearer S . An overview of current and potential applications of thermal remote sensing in precision agriculture[J]. Computers and Electronics in Agriculture, 2017, 139: 22-32. |
9 | Sankaran S , Khot L R , Espinoza C Z , et al . Low-alti tude, high-resolution aerial imaging systems for row and field crop phenotyping: A review[J]. European Journal of Agronomy, 2015, 70: 112-123. |
10 | Mesas-Carrascosa F J , Torres-Sánchez J , Clavero-Rumbao I , et al . Assessing optimal flight parameters for generating accurate multispectral orthomosaicks by UAV to support site-specific crop management[J]. Remote Sensing, 2015, 7(10): 12793-12814. |
11 | Liu Y , Pu H , Sun D W . Hyperspectral imaging tech nique for evaluating food quality and safety during various processes: A review of recent applications[J]. Trends in Food Science & Technology, 2017, 69: 25-35. |
12 | Mahlein A K , Rumpf T , Welke P , et al . Development of spectral indices for detecting and identifying plant diseases[J]. Remote Sensing of Environment, 2013, 128(1): 21-30. |
13 | Su J , Liu C , Coombes M , et al . Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery[J]. Computers and Electronics in Agriculture, 2018, 155: 157-166. |
14 | Franke J , Menz G . Multi-temporal wheat disease detection by multi-spectral remote sensing[J]. Precision Agriculture, 2007, 8(3): 161-172. |
15 | Liu Z Y , Wu H F , Huang J F . Application of neural networks to discriminate fungal infection levels in rice panicles using hyperspectral reflectance and principal components analysis[J]. Computers and Electronics in Agriculture, 2010, 72(2): 99-106. |
16 | Zhang B , Huang W , Li J , et al . Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review[J]. Food Research International, 2014, 62(62): 326-343. |
17 | Zhang J C , Yuan L , Pu R , et al . Comparison between wavelet spectral features and conventional spectral features in detecting yellow rust for winter wheat[J]. Computers and Electronics in Agriculture, 2014, 100(2): 79-87. |
18 | Lin Y , Pu R , Zhang J , et al . Using high spatial resolution satellite imagery for mapping powdery mildew at a regional scale[J]. Precision Agriculture, 2016, 17(3): 332-348. |
19 | Yao Z , He D , Lei Y . Hyperspectral Imaging for identification of powdery mildew and stripe rust in wheat[C]// 2018 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, 2018. |
20 | 王海光, 马占鸿, 王韬, 等 . 高光谱在小麦条锈病严重度分级识别中的应用[J]. 光谱学与光谱分析, 2007, 27(9): 1811-1814. |
Wang H , Ma Z , Wang T , et al . Application of hyperspectral data to the classification and identification of severity of wheat stripe rust[J]. Spectroscopy and Spectral Analysis, 2007, 27(9): 1811-1814. | |
21 | Naidu R A , Perry E M , Pierce F J , et al . The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars[J]. Computers and Electronics in Agriculture, 2009, 66(1): 38-45. |
22 | Prabhakar M , Prasad Y G , Thirupathi M , et al . Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae)[J]. Computers and Electronics in Agriculture, 2011, 79(2): 189-198. |
23 | Luo J , Huang W , Zhao J , et al . Detecting aphid density of winter wheat leaf using hyperspectral measurements[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2013, 6(2): 690-698. |
24 | Spinelli F , Noferini M , Costa G . Near infrared spectroscopy (NIRs): Perspective of fire blight detection in asymptomatic plant material[J]. Acta Horticulturae, 2006, 704(704): 87-90. |
25 | Purcell D E , O'shea M G , Johnson R A , et al . Near-Infrared spectroscopy for the prediction of disease ratings for Fiji leaf gall in sugarcane clones[J]. Applied Spectroscopy, 2009, 63(4): 450-457. |
26 | Shi Y , Huang W , Luo J , et al . Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis[J]. Computers and Electronics in Agriculture, 2017, 141:171-180. |
27 | Lowe A , Harrison N , French A P . Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress[J]. Plant Methods, 2017, 13(1): no. 80, 1-12. |
28 | Chen B , Wang K , Li S , et al . Spectrum characteristics of cotton canopy infected with verticillium wilt and inversion of severity level[C]// Proceedings of First IPIF TC 12 International Conference on Computer and Computing Technologies in Agriculture, (CCTA 2007)(Ⅱ.2007. |
29 | Shi Y , Huang W , Zhou X , et al . Evaluation of wavelet spectral features in pathological detection and discrimination of yellow rust and powdery mildew in winter wheat with hyperspectral reflectance data[J]. Journal of Applied Remote Sensing, 2017, 11(2): 026025. |
30 | Delalieux S , Van A J , Keulemans W , et al . Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data: Non-parametric statistical approaches and physiological implications[J]. European Journal of Agronomy, 2007, 27(1): 130-143. |
31 | Han L , Haleem M S , Taylor M . Automatic detection and severity assessment of crop diseases using image pattern recognition[M]. Emerging Trends and Advanced Technologies for Computational Intelligence. Springer, Cham, 2016. |
32 | Wu D , Feng L , Zhang C , et al . Early detection of botrytis cinerea on eggplant leaves based on visible and near-infrared spectroscopy[J]. Transactions of the American Society of Agricultural and Biological Engineers, 2008, 51(3): 1133-1139. |
33 | Pan L , Lu R , Zhu Q , et al . Predict compositions and mechanical properties of sugar beet using hyperspectral scattering[J]. Food and Bioprocess Technology, 2016, 9(7): 1177-1186. |
34 | Pu R , Ge S , Kelly N M , et al . Spectral absorption features as indicators of water status in coast live oak (Quercus agrifolia) leaves[J]. International Journal of Remote Sensing, 2003, 24(9): 1799-1810. |
35 | Zarco-Tejada P J , Berj N A , Pez-Lozano RL , et al . Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy[J]. Remote Sensing of Environment, 2005, 99(3): 271-287. |
36 | Rouse J W , Haas R H , Schell J A , et al . Monitoring vegetation systems in the great plains with Erts[J]. Nasa Special Publication, 1974, (351): 3010-3017. |
37 | Broge N H , Leblanc E . Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sensing of Environment, 2001, 76(2):156-172. |
38 | Kim D G , Burks T F , Qin J W , et al . Classification of grapefruit peel diseases using color texture feature analysis[J]. International Journal of Agricultural and Biological Engineering, 2009, 2(3): 41-50. |
39 | Gitelson A A . Remote estimation of fraction of radiation absorbed by photosynthetically active vegetation: generic algorithm for maize and soybean[J]. Remote Sensing Letters, 2019, 10(3): 283-291. |
40 | Gitelson A A , Gritz Y , Merzlyak M N . Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J]. Journal of Plant Physiology, 2003, 160(3): 271-282. |
41 | Devadas R , Lamb D W , Simpfendorfer S , et al . Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves[J]. Precision Agriculture, 2009, 10(6): 459-470. |
42 | Ren H , Zhou G , Zhang F . Using negative soil adjustment factor in soil-adjusted vegetation index (SAVI) for aboveground living biomass estimation in arid grasslands[J]. Remote Sensing of Environment, 2018, 209: 439-445. |
43 | Féret J B , le Maire G , Berveiller S J , et al . Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning[J]. Remote Sensing of Environment, 2019, 231: no.110959, 1-14. |
44 | Mirik M , Kassymzhanova-Mirik S , Elliott N C , et al . Using digital image analysis and spectral reflectance data to quantify damage by greenbug (Hemitera: Aphididae) in winter wheat[J]. Computers and Electronics in Agriculture, 2006, 51(1-2): 86-98. |
45 | Yuan L , Zhang J C , Shi Y , et al . Damage mapping of powdery mildew in winter wheat with high-resolution satellite image[J]. Remote Sensing, 2014, 6(5): 3611-3623. |
46 | Held A . Detecting sugarcane ‘orange rust’ disease using EO-1 Hyperion hyperspectral imagery[J]. International Journal of Remote Sensing, 2004, 25(2): 489-498. |
47 | Lenthe J H , Oerke E C , Dehne H W , et al . Digital infrared thermography for monitoring canopy health of wheat[J]. Precision Agriculture, 2007, 8(1-2): 15-26. |
48 | Yang C , Everitt J H , Fernandez C J . Comparison of airborne multispectral and hyperspectral imagery for mapping cotton root rot[J]. Biosystems Engineering, 2010, 107(2): 131-139. |
49 | Panmanas S , Yuki H , Munehiro T . Study on non-destructive evaluation methods for defect pods for green soybean processing by near-infrared spectroscopy[J]. Journal of Food Engineering, 2009, 93(4): 502-512. |
50 | Wang X , Zhang M , Zhu J , et al . Spectral prediction of phytophthora infestans infection on tomatoes using artificial neural network (ANN)[J]. International Journal of Remote Sensing, 2008, 29(6): 1693-1706. |
51 | Yao Q , Guan Z , Zhou Y , et al . Application of support vector machine for detecting rice diseases using shape and color texture features[C]// 2009 International Conference on Engineering Computation, 2009. |
52 | Zhang X , Han L , Dong Y , et al . A deep learning-based approach for automated yellow rust disease detection from high-resolution hyperspectral UAV images[J]. Remote Sensing, 2019, 11(13): 1554. |
53 | Su J , Liu C , Coombes M , et al . Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery[J]. Computers and Electronics in Agriculture, 2018, 155: 157-166. |
54 | Bohnenkamp D , Behmann J , Mahlein A K . In-field detection of yellow rust in wheat on the ground canopy and UAV scale[J]. Remote Sensing, 2019, 11(21): 2495. |
55 | Shi Y , Huang W , Luo J , et al . Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis[J]. Computers and Electronics in Agriculture, 2017, 141: 171-180. |
56 | Qin W , Xue X , Zhang S , et al . Droplet deposition and efficiency of fungicides sprayed with small UAV against wheat powdery mildew[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(2): 27-32. |
57 | Liu W , Cao X , Fan J , et al . Detecting wheat powdery mildew and predicting grain yield using unmanned aerial photography[J]. Plant Disease, 2018, 102(10): 1981-1988. |
58 | Meng Y , Lan Y , Mei G , et al . Effect of aerial spray adjuvant applying on the efficiency of small unmanned aerial vehicle for wheat aphids control[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(5): 46-53. |
59 | Severtson D , Callow N , Flower K , et al . Unmanned aerial vehicle canopy reflectance data detects potassium deficiency and green peach aphid susceptibility in canola[J]. Precision Agriculture, 2016, 17(6): 659-677. |
60 | Kumar S , Röder M S , Singh R P , et al . Mapping of spot blotch disease resistance using NDVI as a substitute to visual observation in wheat (Triticumaestivum L.)[J]. Molecular Breeding, 2016, 36(7): no.95,1-11. |
61 | Albetis J , Jacquin A , Goulard M , et al . On the potentiality of UAV multispectral imagery to detect flavescence dorée and grapevine trunk diseases[J]. Remote Sensing, 2019, 11(1): 23. |
62 | Li X , Andaloro J T , Lang E B , et al . Best Management Practices for Unmanned Aerial Vehicles (UAVs) Application of Insecticide Products on Rice[C]// 2019 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, 2019. |
63 | Mutanga O , Dube T , Galal O . Remote sensing of crop health for food security in Africa: Potentials and constraints[J]. Remote Sensing Applications: Society and Environment, 2017, 8: 231-239. |
64 | Cao F , Liu F , Guo H , et al . Fast detection of sclerotinia sclerotiorum on oilseed rape leaves using low-altitude remote sensing technology[J]. Sensors, 2018, 18(12): 4464. |
65 | Zhang P , Wang K , Lyu Q , et al . Droplet distribution and control against citrus leafminer with UAV spraying[J]. International Journal of Robotics and Automation, 2017, 32(3): 299-307. |
66 | Schultink A , Qi T , Bally J , et al . Using forward genetics in Nicotiana benthamiana to uncover the immune signaling pathway mediating recognition of the Xanthomonas perforans effector XopJ4[J]. New Phytologist, 2019, 221(2): 1001-1009. |
67 | Altas Z , Ozguven M M , Yanar Y . Determination of sugar beet leaf spot disease level (cercospora beticola sacc) with image processing technique by using drone[J]. Current Investigations in Agriculture and Current Research, 2018, 5(3): 669-678. |
68 | Chen D , Shi Y , Huang W , et al . Mapping wheat rust based on high spatial resolution satellite imagery[J]. Computers and Electronics in Agriculture, 2018, 152: 109-116. |
69 | Du X , Li Q , Shang J , et al . Detecting advanced stages of winter wheat yellow rust and aphid infection using RapidEye data in North China Plain[J]. GIScience & Remote Sensing, 2019, 56(7): 1093-1113. |
70 | Yuan L , Pu R , Zhang J , et al . Using high spatial resolution satellite imagery for mapping powdery mildew at a regional scale[J]. Precision Agriculture, 2016, 17(3): 332-348. |
71 | Skawsang S , Nagai M , Tripathi N K , et al . Predicting rice pest population occurrence with satellite-derived crop phenology, ground meteorological observation, and machine learning: A case study for the central plain of thailand[J]. Applied Sciences, 2019, 9(22): 4846. |
72 | Shi Y , Huang W , Ye H , et al . Partial least square discriminant analysis based on normalized two-stage vegetation indices for mapping damage from rice diseases using planetscope datasets[J]. Sensors, 2018, 18(6): 1901. |
73 | Song X , Yang C , Wu M , et al . Evaluation of sentinel-2A satellite imagery for mapping cotton root rot[J]. Remote Sensing, 2017, 9(9): 906, 1-17. |
74 | Staggenborg S A , Lascano R J , Krieg D R . Determining cotton water use in a semiarid climate with the GOSSYM cotton simulation model[J]. Agronomy Journal, 1996, 88(5): 740-745. |
75 | Saunders D G O , Pretorius Z A , Hovmøller M S . Tackling the re-emergence of wheat stem rust in Western Europe[J]. Communications Biology, 2019, 2(1): 51, 1-3. |
[1] | WANG Lin, LIANG Jian, MENG Fanyu, MENG Yang, ZHANG Yongtao, LI Zhenhai. Estimating Grain Protein Content of Winter Wheat in Producing Areas Based on Remote Sensing and Meteorological Data [J]. Smart Agriculture, 2021, 3(2): 15-22. |
[2] | BAI Tiecheng, WANG Tao, ZHANG Nannan. Dynamic Simulation of Jujube Tree Growth and Water Use Evaluation Based on the Calibrated WOFOST Model [J]. Smart Agriculture, 2021, 3(2): 55-67. |
[3] | HAN Dong, WANG Pengxin, ZHANG Yue, TIAN Huiren, ZHOU Xijia. Progress of Agricultural Drought Monitoring and Forecasting Using Satellite Remote Sensing [J]. Smart Agriculture, 2021, 3(2): 1-14. |
[4] | YANG Feifei, LIU Shengping, ZHU Yeping, LI Shijuan. Identification and Level Discrimination of Waterlogging Stress in Winter Wheat Using Hyperspectral Remote Sensing [J]. Smart Agriculture, 2021, 3(2): 35-44. |
[5] | DAI Shengpei, LUO Hongxia, ZHENG Qian, HU Yingying, LI Hailiang, LI Maofen, YU Xuan, CHEN Bangqian. Comparison of Remote Sensing Estimation Models for Leaf Area Index of Rubber Plantation in Hainan Island [J]. Smart Agriculture, 2021, 3(2): 45-54. |
[6] | HU Yanan, LIANG Ju, LIANG Shefang, LI Shijuan, ZHU Yeping, E Yue. Optimum Sowing Date of Winter Wheat in Next 40 Years Based on DSSAT-CERES-Wheat Model [J]. Smart Agriculture, 2021, 3(2): 68-76. |
[7] | WANG Xiujuan, KANG Mengzhen, HUA Jing, DE REFFYE Philippe. From Stand to Organ Level—A Trial of Connecting DSSAT and GreenLab Crop Model through Data [J]. Smart Agriculture, 2021, 3(2): 77-87. |
[8] | ZHANG Jian, XIE Tianjin, YANG Wanneng, ZHOU Guangsheng. Research Status and Prospect on Height Estimation of Field Crop Using Near-Field Remote Sensing Technology [J]. Smart Agriculture, 2021, 3(1): 1-15. |
[9] | SHU Meiyan, CHEN Xiangyang, WANG Xiqing, MA Yuntao. Estimation of Maize Leaf Area Index and Aboveground Biomass Based on Hyperspectral Data [J]. Smart Agriculture, 2021, 3(1): 29-39. |
[10] | GUO Wei, WU Huarui, ZHU Huaji. Design and Application of Facility Greenhouse Image Collecting and Environmental Data Monitoring Robot System [J]. Smart Agriculture, 2020, 2(3): 48-60. |
[11] | CHEN Ailian, LI Jiayu, ZHANG Shengjun, ZHU Yuxia, ZHAO Sijian, SUN Wei, ZHANG Qiao. Application of Satellite Remote Sensing Yield Estimation Technology in Regional Revenue Protection Crop Insurance: A Case of Soybean [J]. Smart Agriculture, 2020, 2(3): 139-152. |
[12] | HONG Wei, XU Baohua, LIU Shengping. Design and Experimental Research of Long-Term Monitoring System for Bee Colony Multiple Features [J]. Smart Agriculture, 2020, 2(2): 105-114. |
[13] | YANG XuanJiang, LI Hualong, LI Miao, HU Zelin, LIAO Jianjun, LIU Xianwang, GUO Panpan, YUE Xudong. Beehive Key Parameters Online Monitoring System and Performance Test [J]. Smart Agriculture, 2020, 2(2): 115-125. |
[14] | WANG Jinhong, HAN Yuxing. Cognitive Radio Sensor Networks Clustering Routing Algorithm for Crop Phenotypic Information Edge Computing Collection [J]. Smart Agriculture, 2020, 2(2): 28-47. |
[15] | GU Hao, WANG Zhiqiang, WU Hao, JIANG Yongnian, GUO Ya. A Fluorescence Based Dissolved Oxygen Sensor [J]. Smart Agriculture, 2020, 2(2): 48-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||